Home
Class 12
MATHS
If the maximum distance of any point on ...

If the maximum distance of any point on the ellipse `x^2+2y^2+2x y=1` from its center is `r ,` then `r` is equal to `3+sqrt(3)` (b) `2+sqrt(2)` `(sqrt(2))/(sqrt(3-sqrt(5)))` (d) `sqrt(2-sqrt(2))`

A

`3+sqrt(3)`

B

`2+sqrt(2)`

C

`sqrt(2)//sqrt(3-sqrt5)`

D

`sqrt(2-sqrt(2))`

Text Solution

Verified by Experts

Herem the center of the ellipse is (0,0)
Let `P(r cos theta, r sin theta)` be any point on the given ellipse. Then `r^(2) cos^(2) theta+2r^(2) sin ^(2) theta+2r^(2) sin theta cos theta=1`
`or r^(2)=(1)/(cos^(2)theta+2 sin^(2) theta+sin 2 theta)`
`or (1)/(sin^(2)theta+1sin 2theta)`
`=(2)/(1-cos 2 theta+2+2sin 2 theta)`
`(2)/(3-cos 2 theta+2 sin2 theta)`
`or r_("max")=(sqrt(2))/(sqrt(3-sqrt(5)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the eccentric angle of a point on the ellipse (x^2)/6+(y^2)/2=1 whose distance from the center of the ellipse is sqrt(5)

int(dx)/(sqrt(1-2x)+sqrt(3-2x)) =

Find the value of x : (sqrt(3)+sqrt(2))^(x)+(sqrt(3)-sqrt(2))^(x)=10

Simplify : 1/(sqrt2+sqrt3)-(sqrt3+1)/(2+sqrt3)+(sqrt2+1)/(3+2sqrt2)

Simplify : (sqrt5+sqrt3)((3sqrt3)/(sqrt5+sqrt2)-sqrt5/(sqrt3+sqrt2))

Find the angles of the triangle whose sides are (sqrt(3)+1)/(2sqrt(2)), (sqrt(3)-1)/(2sqrt(2)) and sqrt(3)/2 .

Simplify: (sqrt2 (2 + sqrt3))/(sqrt3 (sqrt3 + 1)) - (sqrt2 (2 - sqrt3))/(sqrt3 (sqrt3 -1))

The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5) is

The points on the line x=2 from which the tangents drawn to the circle x^2+y^2=16 are at right angles is (are) (a) (2,2sqrt(7)) (b) (2,2sqrt(5)) (c) (2,-2sqrt(7)) (d) (2,-2sqrt(5))

Prove that, int_(2)^(3)(sqrt(x)dx)/(sqrt(x)+sqrt(5-x))=(1)/(2)