Home
Class 12
MATHS
If (sqrt(3))b x+a y=2a b touches the ell...

If `(sqrt(3))b x+a y=2a b` touches the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` , then the eccentric angle of the point of contact is `pi/6` (b) `pi/4` (c) `pi/3` (d) `pi/2`

A

`pi//6`

B

`pi//4`

C

`pi//3`

D

`pi//2`

Text Solution

Verified by Experts

The equation of tanents is
`(x)/(a)(sqrt(3))/(2)+(y)/(b)(1)/(2)=1" "(1)`
and the equation of tangent at the point `(a cos phi, b sin b phi)` is `(x)/(a)cos phi+(y)/(b) sin phi=1 " "(2)`
Comparing (1) and (2), we have
`cos phi =(sqrt(3))/(2) and sin phi=(1)/(2)`
Hence, `phi=pi//6`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then find the ecentricity angle theta of point of contact.

The distance of a point on the ellipse (x^2)/6+(y^2)/2=1 from the center is 2. Then the eccentric angle of the point is pi/4 (b) (3pi)/4 (c) (5pi)/6 (d) pi/6

If the area of the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 is 4pi , then find the maximum area of rectangle inscribed in the ellipse.

The angle between the tangents drawn from the point (1,4) to the parabola y^2=4x is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If the line l x+m y+n=0 cuts the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 at points whose eccentric angles differ by pi/2, then find the value of (a^2l^2+b^2m^2)/(n^2) .

lf the eccentricity of the hyperbola x^2 - y^2 sec^2 alpha=5 is sqrt3 times the eccentricity of the ellipse x^2 (sec^2alpha )+y^2=25, then a value of alpha is : (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2

If the equation x^3+b x^2+c x+1=0,(b (a) -pi (b) -pi/2 (c) pi/2 (d) pi

If omega is one of the angles between the normals to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 (b>a) at the point whose eccentric angles are theta and pi/2+theta , then prove that (2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))

The line tangent to the curves y^3-x^2y+5y-2x=0 and x^2-x^3y^2+5x+2y=0 at the origin intersect at an angle theta equal to (a) pi/6 (b) pi/4 (c) pi/3 (d) pi/2

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 meets one of the directrix at Fdot If P F subtends an angle theta at the corresponding focus, then theta= pi/4 (b) pi/2 (c) (3pi)/4 (d) pi