Home
Class 12
MATHS
If the ellipse (x^2)/(a^2-7)+(y^2)/(13=5...

If the ellipse `(x^2)/(a^2-7)+(y^2)/(13=5a)=1` is inscribed in a square of side length `sqrt(2)a` , then `a` is equal to `6/5` `(-oo,-sqrt(7))uu(sqrt(7),(13)/5)` `(-oo,-sqrt(7))uu((13)/5,sqrt(7),)` no such a exists

A

`6//5`

B

`11//10`

C

`13//10`

D

no such a exists

Text Solution

Verified by Experts

Since sides of square are tangent to ellipse and perpendicular to each other, vertices lie on the director circle.
Equation of director circle is `x^(2)+y^(2)=(a^(2)-7)+(13+-5a)`
`or x^(2)+y^(2)=a^(2)-5a+6`
Thus, radius of the circle is a`:. a^(2)-5a+6=a^(2)`
or a=6/5
But for an ellipse, we have must `a^(2)-7gt 0 and 13-5agt0`
`:. ane=(6)/(5)`
Hence, no such a exists.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= (sqrt13+2sqrt3) , then x+1/x is equal to ?

The set of all real numbers x for which x^2-|x+2|+x >0 is (-oo,-2) b. (-oo,-sqrt(2))uu(sqrt(2),oo) c. (-oo,-1)uu(1,oo) d. (sqrt(2),oo)

In a A B C , if tanA:tanB :tanC=3:4:5, then the value of sinA sinB sinC is equal to (a) 2/(sqrt(5)) (b) (2sqrt(5))/7 (2sqrt(5))/9 (d) 2/(3sqrt(5))

If two chords drawn from the point A(4,4) to the parabola x^2=4y are bisected by the line y=m x , the interval in which m lies is (a) (-2sqrt(2),2sqrt(2)) (b) (-oo,-sqrt(2))uu(sqrt(2),oo) (c) (-oo,-2sqrt(2)-2)uu(2sqrt(2)-2,oo) (d) none of these

Evaluate : int_(1)^(5)(sqrt(x+1))/(sqrt(x+1)+sqrt(7-x))dx.

Evaluate int ((8x+13)/sqrt(4x+7)) dx

If the ellipse (x^2)/4+y^2=1 meets the ellipse x^2+(y^2)/(a^2)=1 at four distinct points and a=b^2-5b+7, then b does not lie in (a) [4,5] (b) (-oo,2)uu(3,oo) (c) (-oo,0) (d) [2,3]

If (sqrt7-sqrt3)=1/sqrt5(sqrt(35)+x) , the value of x is:

If x= (2sqrt(10))/7 find the value of (sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))

Find the value of sqrt(13+sqrt(7+(sqrt4)))