Home
Class 12
MATHS
The normal at a variable point P on the ...

The normal at a variable point `P` on the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` of eccentricity `e` meets the axes of the ellipse at `Qa n dRdot` Then the locus of the midpoint of `Q R` is a conic with eccentricity `e '` such that (a)`e^(prime)` is independent of `e` (b) `e^(prime)=1` (c)`e^(prime)=e` (d) `e^(prime)=1/e`

A

e' is independent of e

B

e'=1

C

e'=e

D

`e'=1//e`

Text Solution

Verified by Experts

Normal at point `P(a cos theta, b sin theta)` is
`(ax)/(cos theta)-("by")/(sin theta)=a^(2)-b^(2)" "`
It meets the axes at
`Q(((a^(2)-b^(2))cos theta)/(a),0)`
and `Q(0,((a^(2)-b^(2))sin theta)/(b))`
Let T(h,k) be a midpoint of QR. Then,
`2h=((a^(2)-b^(2))cos theta)/(b)`
and `2h=((a^(2)-b^(2))sin theta)/(b)`
or `cos ^(2)thetasin^(2)theta=(4h^(2)a^(2))/((a^(2)-b^(2))^(2))+(4k^(2)b^(2))/((a^(2)-b^(2))^(2))=1`
Therfore, the locus is
`(x^(2))/(((a^(2)-b^(2))^(2))/(4a^(2)))+(y^(2))/(((a^(2)-b^(2))^(2))/(4b^(2)))=1" "(2)`
Which is an ellipse, having eccentricity e' givne by
`e'^(2)=1-((a^(2)-b^(2))^(2)//4a^(2))/((a^(2)-b^(2))^(2)//4b^(2))=1-(b^(2))/(a^(2))=e^(2)`
`a'=e`
Note:
In (2), `((a^(2)-b^(2)))/(4a^(2))lt((a^(2)-b^(2)))/(4b^(2))`. Hence, the x-axis is the minor axis.
Promotional Banner

Similar Questions

Explore conceptually related problems

The normal at a point P on the hyperbola b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2) of eccentricity e, intersects the coordinates axes at Q and R respectively. Prove that the locus of the mid-point of QR is a hyperbola of eccentricity (e )/(sqrt(e^(2)-1)) .

If e be the eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) = 1 , then e =

Show that the line (ax)/(3)+(by)/(4)=c be a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , When 15c=a^(2)e^(2) where e is the eccentricity of the ellipse.

If e is the eccentricity of the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) = 1 , then e =

The tangent at the point theta on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 , meets its auxiliary circle at two points whose join subtends a right angle at the centre, show that the eccentricity of the ellipse is given by, (1)/(e^(2))=1+sin^(2)theta

If e_1 is the eccentricity of the hyperbola (y^(2))/(b^(2)) - (x^(2))/(a^(2)) = 1 then e_(1) =

If omega is one of the angles between the normals to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 (b>a) at the point whose eccentric angles are theta and pi/2+theta , then prove that (2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))

If a x+b y=1 is tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then a^2-b^2 is equal to (a) 1/(a^2e^2) (b) a^2e^2 (c) b^2e^2 (d) none of these

Let Aa n dB be two events such that P(AnnB^(prime))=0. 20 ,P(A^(prime)nnB)=0. 15 ,P(A^(prime)nnB^(prime))=0. 1 ,t h e nP(A//B) is equal to