Home
Class 12
MATHS
If the tangent drawn at point (t^2,2t) o...

If the tangent drawn at point `(t^2,2t)` on the parabola `y^2=4x` is the same as the normal drawn at point `(sqrt(5)costheta,2sintheta)` on the ellipse `4x^2+5y^2=20,` then `theta=cos^(-1)(-1/(sqrt(5)))` (b) `theta=cos^(-1)(1/(sqrt(5)))` `t=-2/(sqrt(5))` (d) `t=-1/(sqrt(5))`

A

`theta=cos^(-1)(-(1)/(sqrt(5)))`

B

`theta=cos^(-1)((1)/(sqrt(5)))`

C

`t=-(2)/(sqrt(5))`

D

`t=-(1)/(sqrt(5))`

Text Solution

Verified by Experts

The eqaution of the tagent at `(t^(2),2t)` to the parabola `y^(2)=4x` is
`2ty=2(x+r^(2))`
or`ty=x+r^(2)`
or `x-ty+t^(2)=0" "(1)`
The equation of the normal at `(sqrt(5)cos theta, 2 sin theta)` on the ellipse `4x^(2)+5y^(2)=20`is
` (sqrt(5)sectheta)x-(2"cosec" theta)y=5-4`
` (sqrt(5)sectheta)x-(2"cosec" theta)y=1" "(2)`
Given that (1) and (2) represent the same line then.
`(sqrt(5)sectheta)/(1)=(-2"cosec" theta)/(-t)=(-1)/(r^(2))`
or `t=(2)/(sqrt(5))cot theta and t=-(1)/(2)sintheta`
or `(2)/(sqrt(5))cot theta =-(1)/(2)sintheta`
or `4 cos theta=-sqrt(5)(1-cos^(2)theta)`
on `sqrt(5)cos^(2) theta-4 costheta-sqrt(5)=0`
or `(cos theta-sqrt(5))(sqrt(5)cos theta+1)=0`
`or cos theta=-(1)/(sqrt(3))`
`or theta=cos^(-1)(-(1)/(sqrt(5)))`
Putting `cos theta-ssqrt(5) "in" t=-(1//2) sin theta,` we get
`t=-(1)/(2)sqrt(1-(1)/(5))=-(1)/(sqrt(5))`
Hence , `theta = cos^(-1)(-(1)/(sqrt(5))) and t=-(1)/(sqrt(5))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the tangent drawn at point (t^2,2t) on the parabola y^2=4x is the same as the normal drawn at point (sqrt(5)costheta,2sintheta) on the ellipse 4x^2+5y^2=20, then (a) theta=cos^(-1)(-1/(sqrt(5))) (b) theta=cos^(-1)(1/(sqrt(5))) (c) t=-2/(sqrt(5)) (d) t=-1/(sqrt(5))

cos ^(-1)"" (1)/(sqrt(5))+ cos ^(-1) ""(2)/(sqrt(5))=(pi)/(2)

If the tangents to y^2=4ax at the point (at^2,2at) where |t|>1 is a normal x^2-y^2=a^2 at the point (asectheta,a tan theta) , then t=

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

cos2theta = (sqrt(2)+1)(costheta -1/sqrt(2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Simiplify (1)/(7+4sqrt3)+(1)/(2+sqrt5)

Find the eccentric angle of a point on the ellipse (x^2)/6+(y^2)/2=1 whose distance from the center of the ellipse is sqrt(5)

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)

The points on the line x=2 from which the tangents drawn to the circle x^2+y^2=16 are at right angles is (are) (a) (2,2sqrt(7)) (b) (2,2sqrt(5)) (c) (2,-2sqrt(7)) (d) (2,-2sqrt(5))