Home
Class 12
MATHS
If a normal to the ellipse (x^(2))/(a^(...

If a normal to the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` u=is `4-3y=7` and its ecentricity is `(sqrt(7))/(4)` , then the volume of L.R can be

A

`(9)/(sqrt(2))`

B

`(9)/(2)`

C

`(8sqrt(337))/(19)`

D

`(3sqrt(337))/(8)`

Text Solution

Verified by Experts

Equation of the normal at `(a co theta, b sin theta)` is `ax sec theta-"by cosec" theta=a^(2)-b^(2)`
Comapring with `4x-3y=7` we, get
`(a sec theta)/(4)=(b "cosec" theta)/(3)=(a^(2)-b^(2))/(7)" "(1)`
For`agtb`,
`b^(2)a^(2)(1-e^(2))`
`:. b=(3a)/(4)" "(2)`
From equation (1) we get
`((a)/(4))/(costheta)=((b)/(3))/(sintheta)=sqrt((a^(2))/(16)+(b^(2))/(9))=(a^(2)-b^(2))/(7)" "(3)`
Solging (2) and (3) we get
`rArra=4sqrt(2),b=3sqrt(2)`
L.R. =`(2b^(2))/(a)=(2xx18)/(4sqrt(2))=(9)/(sqrt(2))`
For `altb`, we have,
`a^(2)=b^(2)(1-e^(2))`
`rArra=(3b)/(4)`
`rArrr-7sqrt((9)/(16xx16)b^(2)+(b^(2))/(9))=(9)/(16)b^(2)-b^(2)" "("Using"(3))`
`rArr(sqrt(337))/(6xx16),=a(sqrt(337))/(4)`
`:. b=(sqrt(337))/(3),a=(sqrt(337))/(4)`
`L.R. =(2a^(2))/(b)=(2(337)/(16))/((sqrt(337))/(3))=(sqrt(337))/(8)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the slope of normal to the ellipse , (x^(2))/(a^(2))+(y^(2))/(b^(2))=2 at the point (a,b).

Solve (7y^(2)+1)/(y^(2)-1)-4 ((y^(2)-1)/(7y^(2)+1))=-3

Show that the line (ax)/(3)+(by)/(4)=c be a normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , When 15c=a^(2)e^(2) where e is the eccentricity of the ellipse.

Find the equation of the normal to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at the positive end of the latus rectum.

Find the normal to the ellipse 4x^(2)+9y^(2)=36 which is farthest from its centre.

Prove that area common to ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and its auxiliary circle x^2+y^2=a^2 is equal to the area of another ellipse of semi-axis a and a-b.

Show that the equation of the normal to the ellipse (x^(2))/(25)+(y^(2))/(9)=1 "at" ((5)/(sqrt(2)),(3)/(sqrt(2))) is the line 5x-3y=8sqrt(2) .

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then find the ecentricity angle theta of point of contact.

If the equation (x^(2))/(4-m)+(y^(2))/(m-7)+ 1 = 0 represents an ellipse then _

If radius of the director circle of the ellipse ((3x+4y-2)^(2))/(100)+((4x-3y+5)^(2))/(625) =1 is