Home
Class 12
MATHS
Consider the ellipse whose major and min...

Consider the ellipse whose major and minor axes are x-axis and y-axis, respectively. If `phi` is the angle between the CP and the normal at point P on the ellipse, and the greatest value `tan phi` is `3/4` (where C is the centre of the ellipse). Also semi-major axis is 10 units . The eccentricity of the ellipse is

A

`1//2`

B

`1//3`

C

`sqrt(3)//2`

D

none of these

Text Solution

Verified by Experts


Let P be any point on the ellipse t `(a cos theta, b sin theta)`
Therefore, the equation of CP is
`y=((b)/(a) tan theta)x`
The normal to the ellipse at P is
`(ax)/(cos theta)-(bx)/(sin theta)=a^(2)-b^(2)`
Slopes of the lines CPand the normal GP are (b/a) `tan theta` and (a/b) `tan, theta` respectively. Therefore,
`tan phi=((a)/(b) tan theta-(b)/(a)tan theta)/(1+(a)/(b)tan theta(b)/(a)tan theta)`
`(a^(2)-b^(2))/(ab)=(tan theta)/(sec^(2)theta)`
`=(a^(2)-b^(2))/(ab) sin theta cos theta=(a^(2)-b^(2))/(2ab) sin 2 theta`
Therefore , the greatest value of `tan phi` is
`(x^(2)-b^(2))/(2ab)xx1=(a^(2)-b^(2))/(2ab)`
Given that
`(a^(2)-b^(2))/(2ab)=(3)/(2)`
Let `(a)/(b)=t`
`:. t-(1)/(t)=(3)/(2)`
or `2t^(2)-3t-2=0`
` or 2t^(2)-4t+t-2=0`
`or (2t+1)(t-2)`
`(a)/(b)=2`
or `e^(2)=1-(1)/(4)`
or `e=(sqrt(3))/(2`
The rectangle inscribed in the ellipse, whose one vertexis `a(cos theta,b sin theta), "is" (2a cos theta b sin theta)=2ab sin (2theta)` which has maximum, value 2ab. Given that a=10. Then b=5. Therefore, the maximum area is 100
Promotional Banner

Similar Questions

Explore conceptually related problems

Taking major and minor axes as x and y -axes respectively, find the equation of the ellipse whose lengths of major and minor axes are 6 and 5 respectively .

If the angle between the lines joining the end points of minor axis of an elipes with its one focus is pi/2, then the eccentricity of the ellipse is-

Taking major and minor axes as x and y - axes respectively , find the equation of the ellipse which passes through the point (1,3) and (2,1) .

Taking major and minor axes as x and y -axes respectively, find the equation of the ellipse whose lengths of minor axis and latus rectum are 4 and 2 .

Taking major and minor axes as x and y - axes respectively , find the equation of the ellipse whose coordinates of between the foci is 2 and the distance between the directrices is 4 .

Taking major and minor axes as x and y - axes respectively , find the equation of the ellipse whose distance between the foci is 4sqrt(3) unit and minor axis is of length 4 unit .

The eccentric angle in the first quadrant of a point on the ellipse (x^(2))/(10) +(y^(2))/(8) = 1 at a distance 3 units from the centre of the ellipse is _

Taking major and minor axes as x and y - axes respectively , find the equation of the ellipse whose length of latus rectum is (18)/(5) unit and the coordinates of one focus are (4,0)

Taking major and minor axes as x and y - axes respectively , find the equation of the ellipse whose coordinates of vertices are (pm 5 , 0) and the coordinates of one focus are (4,0) .

S_1, S_2 , are foci of an ellipse of major axis of length 10 units and P is any point on the ellipse such that perimeter of triangle PS_1 S_2 , is 15 . Then eccentricity of the ellipse is: