Home
Class 12
MATHS
Let S and S'' be the foci of the ellipse...

Let S and S'' be the foci of the ellipse `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` whose eccentricity is i.e. P is a variable point on the ellipse. Consider the locus of the incenter of `DeltaPSS''` The maximum area of recatangle inscribed in the locus is

A

`(2abe^(2))/(1+e)`

B

`(2abe)/(1-e)`

C

`(2abe)/(1+e)`

D

none of these

Text Solution

Verified by Experts


Let the coordinates of P be `(a cos theta, b sin theta)`
Here, SP= Focal distance of point `P=a-ae cos theta`
`S''P=a+ae cos theta`
SS''=2ae
If (h,k) are the coordinates of the incenter of `DeltaPSS''`, then
`h=(2ae(a cos theta)+a(1-ecos theta)(-ae)+a(1+e cos theta)ae)/(2ae+a(1-e cos theta)+a(1+e cos theta)`
`as cos theta" "(1)`
`and k=(2ae(a sin theta)+a(1-ecos theta)xx0+a(1+e cos theta)xx0)/(2ae+a(1-e cos theta)+a(1+e cos theta))`
`=(eb sin theta)/((e+1))" "(2)`
Eliminating `theta` from (1) and (2), we get
`(x^(2))/(a^(2)e^(2))+(y^(2))/({be//(e+1)}^(2))=1`
Which clearly represents an ellipse. Let `e_(1)` be its eccentricity . Then
`(b^(2)e^(2))/((e+1)^(2))=a^(2)e^(2)(1-e_(1)^(2))`
or`e_(1)^(2)=1-(b^(2))/(a^(2)(e+1)^(2))`
`or e_(1)^(2)=1-(1-e^(2))/((e+1))=1-(1-e)/(1+e)`
`or e_(1)^(2)=(2e)/(e+1)`
`or e_(1)=sqrt((2e)/(e+1))`
Maximum area of reactangle is
`2(ae)(("be")/(e+1))=(2abe^(2))/(e+1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If e be the eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) = 1 , then e =

Find the eccentricity of an ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 whose latus reactum is half of its major axis.

Suppose S and S' are foci of the dllipse (x^(2))/(25) + (y^(2))/(16) =1. If P is a variable point on the ellipse and if Delta is the area of the triangle PSS', then maxzimum value of Delta is

Calculate the eccentricity of the ellipse (x^(2))/(169)+(y^(2))/(144) = 1

If the area of the ellipse ((x^2)/(a^2))+((y^2)/(b^2))=1 is 4pi , then find the maximum area of rectangle inscribed in the ellipse.

What is the eccentricity of the ellipse (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 if length of its minor axis is equal to the distance between its foci ?

Find the maximum area of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 which touches the line y=3x+2.

Let P be a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 of eccentricity edot If A ,A ' are the vertices and S ,S are the foci of the ellipse, then find the ratio area P S S ' ' : area A P A^(prime)dot

Find the locus of middle points of chords of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 which subtend right angle at its center.

Find the coordinates of a point on the ellipse x^(2) + 2y^(2) = 4 whose eccentric angle is 60^(@)