Home
Class 12
MATHS
If t a nbeta=(ns inalphacosalpha)/(1-ns ...

If `t a nbeta=(ns inalphacosalpha)/(1-ns in^2alpha)` , show that `tan(alpha-beta)=(1-n)t a nalphadot`

Text Solution

Verified by Experts

`tan beta=(nsin alpha cos alpha)/(1-n sin^(2)alpha)=([(nsinalphacos alpha)/(cos^(2)alpha)])/([(1)/(cos^(2)alpha)-(n sin^(2)alpha)/(cos^(2)alpha)])`
[Dividing numerator and enominator by `cos^(2)alpha`]
`=(n tan alpha)/(sec^(2)alpha-n tan^(2)alpha)=(n tan alpha)/(1+tan^(2)alpha-n tan^(2)alpha)`
`=(n tan alpha)/(1+(1-n)tan^(2)alpha)`
Now, `tan(alpha-beta)=(tan alpha-tan beta)/(1+tan alpha tan beta)`
`=[(tan alpha-(n tan alpha)/(1+(1-n)tan^(2)alpha))/(1+tan alpha(n tan alpha)/(1+(1-n)tan^(2)alpha))]`(From Eq. i)
`=(tan alpha+(1-n)tan^(3)alpha-n tan alpha)/(1+(1-n)(tan^(2)alpha+n tan^(2)alpha)`
`=((1-n)tan alpha+(1-n)tan^(3)alpha)/(1+tan^(2)alpha)`
`=(1-n)tan alpha`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Concept App. 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Concept App. 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Concept App. 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If t a nbeta=(nsinalphacosalpha)/(1-nsin^2alpha) , show that tan(alpha-beta)=(1-n)t a nalphadot

If tan beta = (n sin alpha cos alpha)/(1-n sin^(2) alpha), "show that", tan (alpha - beta) = (1 - n) tan alpha.

If cos^2alpha=sin^3alpha then show that tan^6alpha-tan^2alpha=1

If b sin alpha = alphasin (alpha+2beta),"show that"(b+a) tan beta=(b-a)tan (alpha+beta)

If sin alpha + cos alpha = sqrt2 cos alpha,"show that",tan 2 alpha = 1

If sin 2 alpha = 4 sin 2 beta, "show that", 5tan ( alpha -beta) = 3 tan ( alpha +beta)

If tan theta = ( tan alpha - tan beta)/(1-tan alpha tan beta),"show that", sin 2 theta=(sin 2 alpha- sin 2 beta)/(1- sin2 alpha sin 2 beta).

If cos alpha = k cos beta Show that tan ((alpha+beta)/2)=(1-k)/(1+k)cot((alpha-beta)/2)

If tan alpha = (x sin beta)/(1-x cos beta) " and " tan beta = (y sin alpha)/(1-y cos alpha),"show that", (sin alpha)/(sin beta) = x/y .