Home
Class 12
MATHS
The value of sin(pi/14)sin(3pi/14)sin(5p...

The value of `sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin(11pi/14)sin(13pi/14)` is equal to___________

Text Solution

Verified by Experts

The correct Answer is:
`1//64`

`sin""(pi)/(14)sin""(5pi)/(14)sin""(7pi)/(14)sin""(9pi)/(14)sin""(11pi)/(14)sin""(13pi)/(14)`
`=sin""(pi)/(14)sin""(3pi)/(14)sin""(5pi)/(14)sin""(pi)/(2)sin""(pi-(5pi)/(14))`
`xxsin""(pi-(3pi)/(14))sin(x-(pi)/(14))`
`=sin^(2)""(pi)/(14)sin^(2)""(3pi)/(14)sin^(2)""(5pi)/(14)`
`=(sin ""(pi)/(14)sin ""(3pi)/(14)sin""(5pi)/(14))^(2)`
`=[cos((pi)/(2)-(pi)/(14))cos((pi)/(2)-(3pi)/(14))cos((pi)/(2)-(5pi)/(14))]^(2)`
`=[cos""(3pi)/(7)cos""(2pi)/(7)cos""(pi)/(7)]^(2)`
`[(1)/(2sin pi//7){2cos""(pi)/(7)sin""(pi)/(7)cos ""(2pi)/(7)cos""(3pi)/(7)}]^(2)`
`=[(1)/(2^(3)sinpi//7)(2sin""(4pi)/(7)cos(pi-(4pi)/(7))]^(2)`
`=((1)/(8sinpi//7)sin""(8pi)/(7))^(2)`
`=((sin(pi+pi//7)/(8sinpi//7)))^(2)`
`=((-sinpi//7)/(8sinpi//7))^(2)=((1)/(8))^(2)=(1)/(64)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Concept App. 3.7|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Concept App. 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Concept App. 3.5|6 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The value of sin ""pi/14 sin ""(3pi)/(14)sin ""(5pi)/14 sin ""(7pi)/(14) is-

Prove that sin (pi/14)sin((3pi)/14)sin((5pi)/14)=1/8

Find the value of "sin"(pi)/(18)"sin" (5pi)/(18)"sin"(7pi)/(18)

Find the value of sin^(-1)("sin"(3pi)/5)

The principal value of sin^(-1)sin((3pi)/4) is

The value of 3 sin (pi/6) "sec" (pi/3) - 4 sin (5pi/6) cot (pi/4) is-

sin((pi)/3-"sin"^(-1)(-1/2)) is equal to

Find the value of sin^2(pi/16)+ sin^2 ((3pi)/16)+sin^2 ((5pi)/16)+sin^2((7pi)/16) .

cos(pi/14) + cos ((3pi)/14) + cos((5pi)/14) =

sin^(-1)(sin ""(3pi)/(5))