Home
Class 12
MATHS
In a Delta ABC sin Asin B sin C <= (3s...

In a `Delta ABC` `sin Asin B sin C <= (3sqrt3)/8`

Text Solution

Verified by Experts

(a) We have already prove that in `triangle ABC`,
`sin^(2)A+sin^(2)B+sin^(2)Cle(9)/(4)`
Now, using `AMgeGM`, we have
`therefore (sin^(2)A+sin^(2)B+sin^(2)C)/(3)ge3sqrt(sin^(2)Asin^(2)Bsin^(2)C)`
Therefore, from Eq. (1) .
`(((9)/(4)))/(3)ge(sin^(2)A+sin^(2)B+sin^(2)C)/(3)`
`therefore (3)/(4)gt(sin A sin B sinC)^((2)/(3))`
or `sin A sin B sin C le(3sqrt(3))/(8)`
(b) We have already proved that in `triangle ABC`,
`sinA sin B sinCle3sqrt(3)/(8)`
Now, `sin2A+sin2B+sin2C=4sinA sinB sinC`
`le4(3sqrt(3)/(8))`
`therefore sin 2A+sin2B+sin2Cle(3sqrt(3))/(2)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Exercise (Single Correct Answer Type)|100 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Exercise (Multiple Correct Answer Type)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Concept App. 3.9|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC, sin A, sin B, sin C are in A.P, then

If in a triangle ABC ,(sin A+sin B +sin C)(sinA+sinB-sin C)=3sinAsinB then angle C is equal to

In any triangle ABC if sin A sin B sin C+ cos A cos B=1 , then show that a:b:c=1:1: sqrt(2) .

In a triangle ABC, (sin A+ sin B+ sin C) (sin A+sin B-sinC)= 3 sin A sin B, then which one of the following is correct ?

In triangle ABC, sinA sin B + sin B sin C + sin C sin A = 9//4 and a = 2 , then the value of sqrt3 Delta , where Delta is the area of triangle, is _______

In any triangle ABC, if sin A : sin B: sin C= 4:5:6, then prove that, cosA : cosB : cosC = 12:9:2

If in a triangle ABC, b sin B = c sin C, then the triangle is-

In Delta ABC, (sin A (a - b cos C))/(sin C (c -b cos A))=

The perimeter of a triangle ABC iws equal to 2 (sin A+sin B+ sin C). If a=1, then the value of angle A is-

If twice the square of the diameter of a circle is equal to half the sum of the square of the sides of inscribed Delta ABC, then sin^2A+sin^2B++sin^2C is equal to: