Home
Class 12
MATHS
Let A and B denote the statements A : ...

Let `A and B` denote the statements
`A : cos alpha + cos beta + cos gamma =0`
`B : sin alpha + siin beta + sin gamma = 0`
If `cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2)`,
then

A

`A` is true and `B` is false.

B

`A` is false and `B` is true.

C

Both `A and B` are true.

D

Both `A and B` are false.

Text Solution

Verified by Experts

The correct Answer is:
C

` cos (beta -gamma) +cos (gamma - alpha ) + cos (alphea - beta) =-(3)/(2)`
`rArr 2 [cos (beta -gamma) +cos (gamma -alpha ) + cos (alpha - beta)] + 3 =0`
`rArr 2 [cos (beta -gamma ) + cos (gamma -alpha) + cos (alpha -beta)] + sin ^(2) alpha + cos ^(2) alpha + sin ^(2) beta + cos ^(2) beta + sin ^(2) gamma + cos ^(2) gamma =0`
`rArr (sin alpha + sin beta + sin gamma)^(2) + ( cos alpha + cos beta + cos gamma)^(2) =0`
`rArr cos alpha + cos beta + cos gamma =0`
and `sin alpha + sin beta + sin gamma =0`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Multiple correct Answers Type) (JEE Advanced)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let A and B denote the statements A: cos alpha+cos beta+cos gamma=0 ,B: sin alpha+sin beta+sin gamma=0 if cos(beta-alpha)+cos(gamma-alpha)+cos(alpha-beta)=(-3/2) then

If cos (beta - gamma) + cos (gamma - alpha) + cos (alpha - beta) = -3/2, "show that", cos alpha + cos beta + cos gamma = 0 "and" sin alpha + sin beta + singamma = 0."Hence deduce that," cos (beta - gamma) = cos (gamma - alpha) = cos (alpha - beta) = -1/2.

If sin alpha = sin beta and cos alpha = cos beta then-

If cos alpha+ cos beta+ cos gamma + cos alpha cos beta cos gamma=0 , show that sin alpha (1+ cos beta cos gamma)=+- sin beta sin gamma .

If sin alpha + sin beta + sin gamma =3, then the value of (cos alpha + cos beta+ cos gamma) is-

cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=-3/2 show that cosalpha+cosbeta+cosgamma=0 and sinalpha+sinbeta+singamma=0 also cos(beta-gamma)=cos(gamma-alpha)=cos(alpha-beta)=-1/2 .

"Prove that : " sin alpha + sin beta + sin gamma - sin ( alpha + beta + gamma) =4 "sin" (alpha+beta)/2 "sin"(beta + gamma)/2 "sin"(gamma+alpha)/2

sin alpha + sin beta = a "and" cos alpha + cos beta = b cos (alpha + beta) =

If a=cosalpha+isinalpha , b=cosbeta+isinbeta , c=cosgamma+isingamma and b/c+c/a+a/b=1 , then cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta ) =

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to