Home
Class 12
MATHS
Let cos (alpha+beta) = 4/5 and sin(alph...

Let ` cos (alpha+beta) = 4/5` and `sin(alpha-beta)=5/13 ` where `0<= alpha,beta<= pi/4` then find ` tan (2alpha)`

A

`(20)/(7)`

B

` ( 25)/(16) `

C

`(56)/(33)`

D

`(19)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
C

`cos (alpha + beta )=(4)/(5)`
`rArr tan (alpha + beta) = (3)/(4)`
`" " sin (alpha - beta) = (5)/(13)`
`rArr tan (alpha - beta) = (5)/(12)`
` therefore tan 2 alpha = tan (alpha + beta + alpha - beta)`
` " "= ((3)/(4)= (5)/(12))/(1-(3)/(4)(5)/(12)) = (56)/(33)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Multiple correct Answers Type) (JEE Advanced)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If cos (alpha+beta)=4/5 and sin(alpha-beta)=5/13 and alpha,beta lie between 0 and pi/4,alphagtbeta , then, then find tan 2alpha

If sin(alpha + beta) = 4/5 and sin (alpha - beta)= 5/13 , find the value of tan 2 alpha .

If sin ( alpha + beta ) =(4)/(5) and sin (alpha - beta ) =(5)/(13), find the value of tan 2 alpha

If cos(alpha+beta)=4/5.sin(alpha-beta)=5/13 and alpha , beta lie between 0 and pi/4 then find the value of tan2alpha

It cos(alpha+beta)=4/5,sin(alpha-beta)=5/(13)and alpha,beta lie between 0a n dpi/4 , prove that tan2alpha=(56)/(33)

If 0lt betalt alpha lt(pi/4),cos(alpha+beta)=3/5 and cos(alpha-beta)=4/5 then find the avlue of sin 2 alpha

IF cos (alpha +beta )=(5)/(13) and cos (alpha - beta )=(4)/(5), then find the value of tan 2 beta .

If "cot"(alpha+beta)=0, then "sin"(alpha+2beta) can be

The number of ordered pairs (alpha,beta) , where alpha,betain(-pi,pi) satisfying cos(alpha-beta)=1 andcos(alpha-beta)=1 and cos(alpha+beta)=1/e is

The line joining A (b cos alpha b sin alpha ) and B (a cos beta , a sin beta ) , where a ne b , is produced to the point M(x , y) so that AM : BM = b : a . Then x "cos" (alpha+beta)/(2)+ y "sin" (alpha+beta)/(2) is equal to _