Home
Class 12
MATHS
If A=sin^(2)x+cos^(4)x, then for all rea...

If `A=sin^(2)x+cos^(4)x`, then for all real x

A

`(3)/(4) le A le (13)/(16)`

B

`(3)/(4) le A le 1`

C

`(13)/(16) le A le 1`

D

`1 le A le 2`

Text Solution

Verified by Experts

The correct Answer is:
B

`A = sin ^(2) x + cos ^(4) x `
`= 1- cos ^(2) x + cos ^(4)x`
`= 1 - cos ^(2) x (1- cos ^(2)x)`
` = 1- cos^(2)x sin ^(2) x `
` = 1- ( sin ^(2) 2x)/( 4)`
Now, `0 le sin ^(2) 2 x le 1`
`rArr - (1)/(4) le - ( sin^(2) 2x )/(4) le 0`
`rArr (3)/(4) le 1 - ( sin ^(2)2x)/(4x) le 1 `
`rArr 3//4 le A le 1`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Single correct Answer Type (Archives) JEE Advanced|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Archives (Multiple correct Answers Type) (JEE Advanced)|2 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Exercise (Numerical Value Type )|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If A=sin^2theta+cos^4theta then for all real values of theta

Let F(x) be an indefinite integral of sin^(2) x Statement - I : The function F(x) satisfies F(x+pi) = F(x) for all real x Statement - II : sin^(2) (pi+x) = sin^(2) x for all real x

If x= cos ^(2) theta + sin ^(4) theta, then for all real values of theta-

Find all the values of alpha for which the equation sin ^(4) x+ cos^(4)x+ sin 2x +alpha=0 is valid.

Let f(x) = sin^6x + cos^6x + k(sin^4 x + cos^4 x) for some real number k. Determine(a) all real numbers k for which f(x) is constant for all values of x.

If sin x + sin ^(2) x=1 then the value of (cos ^(8) x+2 cos ^(6)x +cos ^(4) x) is-

cos 4x =1- 8 sin ^(2) x cos ^(2) x

If sin^-1(sin5) gt x^2-4x , then find number of all possible integer values of x

Prove that, sin^(4) x + cos^(4) x = 1- 1/2 sin^(2) 2x

intdx/(sin^4x+cos^4x)