Home
Class 12
MATHS
The maximum value of the expression 1/(s...

The maximum value of the expression `1/(sin^2theta+3sinthetacostheta+5cos^2theta)` is………

Text Solution

Verified by Experts

The correct Answer is:
2

`(1)/ ( 4 cos^(2) theta + 1 + (3)/(2) sin 2 theta) = (1)/(2[1+ cos 2 theta] + 1+ (3)/(2) sin 2theta) `
` " " = (1)/( 2cos 2theta + (3)/(2) sin 2 theta + 3)`
Now,
`" " - sqrt(2^(2) + ((3)/(2))^(2)) le 2 cos 2theta + (3)/(2) sin 2 theta le sqrt (2^(2) + ((3)/(2))^(2))`
or ` - (5)/(2) le 2 cos 2 theta + (3)/(2) sin 2 theta le (5)/(2)`
`rArr (1)/(2) le 2 cos 2 theta + (3)/(2) sin 2 theta + 3 le (11)/(2)`
`rArr (2)/(11) le (1)/( 2 cos 2 theta + (3)/(2) sin 2 theta + 3) le 2`
Hence, the maximum value is 2.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

sin4theta cos 2theta = cos5theta sin theta

sin2theta - cos2theta =1

Find the maximum and minimum value of cos^2theta -6 sin theta .cos theta +3sin^2theta +2

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Find the maximum value of 1/2sin^2theta+1/3cos^2theta

Show that, for all real values of theta the function (2 sin theta+ cos theta)/(3 sin theta+ 4 cos theta) is increasing.

If sin theta+sin^2theta=1 , show that cos^4theta+cos^2theta=1 .

If sin^2theta=sinphi cosphi then the value of cos2theta is