Home
Class 12
MATHS
Let a,b,c be the sides of a triangle ABC...

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

A

`pi//6`

B

`pi//3`

C

`2pi//3`

D

`5pi//6`

Text Solution

Verified by Experts

The correct Answer is:
A, D

cos(A -C) + cos B = 1
`rArr cos(A-C)-cos(A+C)=1`
`rArr 2sin A sin C=1` …..(1)
Now a= 2c, so by sine rule sin A = 2sin C …..(2)
From (1) and (2), we get `4sin^(2)C=1`
`rArr sin C=(1)/(2)`
`rArr C={(pi)/(6),(5pi)/(6)}`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC , if a,b,c are the sides opposite to angles A , B , C respectively, then the value of |{:(bcosC,a,c cosB),(c cosA,b,acosC),(acosB,c,bcosA):}| is

If a , b , c are the sides of triangle , then the least value of (a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) is

Knowledge Check

  • In a triangle ABC, a=2 cm, b=3 cm and c=4 cm, then the value of cos A is-

    A
    `11/16`
    B
    `1/24`
    C
    `7/8`
    D
    `5/8`
  • In triangle ABC, If cos B= a/(2c) , then the triangle is-

    A
    equilateral
    B
    isosceles
    C
    right angled
    D
    scalene.
  • In a triangle ABC, (a+b+c)(b+c-a)=kbc if

    A
    `klt0`
    B
    `kgt6`
    C
    `0ltklt4`
    D
    `kgt4`
  • Similar Questions

    Explore conceptually related problems

    In any triangle ABC, prove that cosA + cos B + cos C le 3/2

    Using vectors , prove that in a triangle ABC a = b cos C + c cos B where a,b,c are lengths of the ideas opposite to the angles A,B,C of triangle ABC respectively .

    In Delta ABC,if cos A+sin A-2/(cosB+sin B)=0, then the value of ((a+b)/c)^4 is

    If Delta ABC is acute angled triangle and cos (B+C-A)=0, sin (C+A-B)= sqrt3/2 , then the value of C is

    In a triangle ABC, if (b+c)/(11) =(c+a)/(12) =(a+b)/(13), then the value of cos C is-