Home
Class 12
MATHS
If A, B, C are the angles of a triangle ...

If A, B, C are the angles of a triangle such that `sin^(2)A+sin^(2)B=sin^(2)C`, then

A

sin A + sin B >1

B

tan A tan B = 1

C

sin A + sin B = 1

D

tan A. tan B < 1

Text Solution

Verified by Experts

The correct Answer is:
A, B

`sin^(2)A+sin^(2)B=sin^(2)C`
`rArr a^(2)+b^(2)=c^(2)`
`rArr C=(pi)/(2)` and `A, B lt (pi)/(2)`
Since `A+B=(pi)/(2) therefore tan A tan B = 1`
Also `sin A gt sin^(2) A, sin B gt sin^(2) B`
`rArr sin A + sin B gt sin^(2) A + sin^(2)B = sin^(2)C = 1`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE PUBLICATION|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If A,B,C are the angles of a triangle, show that, (i) sin B cos(C +A) + cos B sin (C +A) = 0

If A,B,C be the angles ofa triangle then prove that (sin A + sin B)(sin B + sin C)(sinC + sinA) gt sin A sin B sinC .

If A,B,C are interior angles of a triangle ABC such that (cosA+cosB+cosC)^2+(sin A+sin B+sin C)^2=9 then the number of possible triangle is

If A,B,C are the angles of a triangle, show that that greatest value of sin 2A+ sin 2B+ sin 2C "is" (3 sqrt(3))/(2)

If A,B,C are angles of a triangle, then 2sin(A/2)cosec (B/2)sin(C/2)-sinAcot(B/2)-cosA is (a)independent of A,B,C (b) function of A,B (c)function of C (d) none of these

If A,B,C are the angles of a triangle, find the maximum values of : sin A sin B sin C

If A,B,C are the angles of a triangle, find the maximum values of : sin A+ sinB+ sin C

A, B and C are interior angles of a triangle ABC, then sin ((B + C)/(2)) =

ABC is a right angled triangle, then the value of sin^(2)A + sin^(2)B + sin^(2)C will be-

If A, B and C are interior angles of a triangle ABC, then show that sin((B+C)/2) =Cos (A/2) ​