Home
Class 12
MATHS
Find a unit vector vecc if -hati+hatj-ha...

Find a unit vector `vecc` if `-hati+hatj-hatk` bisects the angle between vectors `vecc` and `3hati+4hatj`.

Text Solution

Verified by Experts

Let `vecc=xhati+yhatj+zhatk`, where `x^(2)+y^(2)+z^(2)=1`.
Unit vector along `3hati+4hatj` is `(3hati+4hatj)/(5)`.
The bisector of these two is `-hati+hatj-hatk` (given). Therefore,
`" "-hati+hatj-hatk=lamda(xhati+yhatj+zhatk+(3hati+4hatj)/(5))`
`" " -hati+hatj-hatk=(1)/(5) lamda [(5x+3)hati+(5y+4)hatj +5zhatk]`
`" "(lamda)/(5)(5x+3)=-1, (lamda)/(5)(5y+4)=1, (lamda)/(5)5z=-1`
`" "x=-(5+3lamda)/(5lamda), y=(5-4lamda)/(5lamda),z=-(1)/(lamda)`
Putting these values in (i), i.e., `x^(2)+y^(2)+z^(2)=1`, we get
`" "(5+3lamda)^(2)+(5-4lamda)^(2)+25=25lamda^(2)`
`" "25lamda^(2)-10lamda+75=25lamda^(2)`
`" "lamda=(15)/(2)`
`therefore" "vecc=(1)/(15)(-11hatik+10hatj-2hatk)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 34|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 35|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 32|1 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

Angle between the vectors hati +hatj and hati-hatk is

Find the angle between the vectors vecA=2hati+3hatj and vecB=-3hati+2hatj .

Find the angle between the vectors hati-2hatj+3hatkand3hati-2hatj+hatk

Find the magnitude of the vector 3hati-4hatj+12hatk .

If the position vectors of the points A, B, C, D are hati+hatj+hatk, 2hati+5hatj, 3hati +2hatj-3hatk and hati-6hatj-hatk respectively, then the angle between the vectors vec(AB) and vec(CD) is -

Find the angle between the vectors veca=hati-hatj+hatk and vecb=hati+hatj-hatk .

Calculate the unit vector along vecA=3hati+4hatj-hatk .

Calculate the angle between the vector ______ vecA = 3hati+4hatj +12hatk and z axis.

A vector vecP=3hati-2hatj+ahatk is perpendicular to the vector vecQ=2hati+hatj-hatk . The value of a is