Home
Class 12
MATHS
i. If veca, vecb and vecc are non-coplan...

i. If `veca, vecb and vecc` are non-coplanar vectors, prove that vectors `3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc` are coplanar.

Text Solution

Verified by Experts

i. If the given vectors are coplanar, then we should be able to express one of them as a linear combination of the other two.
Let us assume that `3veca-7vecb-4vecc=x(3veca-2vecb+vecc)+y(veca+vecb+2vecc),`
where `x and y` are scalars. Since `veca, vecb and vecc` are non-coplanar, equating the coefficients of `veca, vecb and vecc`, we get
`" "3x+y=3, -2x+y=-7, x+2y=-4`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 44|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 45|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 42|1 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

i. If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3veca -7vecb -4 vecc ,3 veca -2vecb + vecc and veca + vecb +2 vecc are coplanar.

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If vec a , vec b and vec c are any three non-coplanar vectors, then prove that points are collinear: veca+ vecb+vecc , 4veca+3vecb ,10veca+7vec b-2vecc .

If veca, vecb and vecc are non- coplanar vecotrs, then prove that |(veca.vecd)(vecbxxvecc)+(vecb.vecd)(veccxxveca)+(vecc.vecd)(vecaxxvecb)| is independent of vecd where vecd is a unit vector.

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca, vecb and vecc are non -coplanar unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt2,vecb and vecc are non- parallel , then prove that the angle between veca and vecb is 3pi//4

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))