Home
Class 12
MATHS
Examine the following vectors for linear...

Examine the following vectors for linear independence :
i. `veci+vecj+veck, 2veci+vecj-veck, -veci -2vecj+2veck`
ii. `3veci+vecj-veck, 2veci-vecj+7veck, 7veci-vecj+13veck`

Text Solution

Verified by Experts

(i) Let `veca= veci+vecj+veck, vecb= 2veci+3vecj-veck, vecc= -veci-2vecj+2veck`
`" "|{:(1,,1,,1),(2,,3,,-1),(-1,,-2,,2):}|=-1`
Hence, vectors are non-coplanar and linearly independent.
(ii) Let `veca= 3veci+vecj-veck, vecb= 2veci-vecj+ 7veck, vecc= 7veci-vecj+13 veck`
`" "|{:(3,,1,,-1), (2,,-1,,7), (7,,-1,,13):}|=0`
Hence, vectors are coplanar and linearly dependent.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise SUBJECTIVE|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 1.1|20 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

Examine the following vector for linear independence: (1) vec i+vec j+vec k ,2vec i+3vec j-veck,-vec i-2vecj+2vec k (2) 3veci+vec j-vec k, 2vec i-vec j+7 vec k, 7 veci-vec j+13vec k

veca =2veci+3vecj-2veck vecb =4veci-vecj+5veck Find veca xx vecb

veca =3veci+4vecj-6veck vecb =2veci+5vecj+3veck Find veca xx vecb

A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + veck and perpendicular to veci + vecj + veck is _______

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

if vecr.veci=vecr.vecj=vecr.veck and|vecr|= 6, "then find vector" vecr .

if vecr.veci=vecr.vecj=vecr.veck and|vecr|= 9, "then find vector" vecr .

A non vector veca is parallel to the line of intersection of the plane determined by the vectors veci,veci+vecj and thepane determined by the vectors veci-vecj,veci+veck then angle between veca and veci-2vecj+2veck is = (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx(vecy xx vecz) = veca, vecy xx( vecz xx vecx)=vecb and vecx xx vecy=vecc, find vecx, vecy, vecz in terms of veca, vecb and vecc .

A vector (vecd) is equally inclined to three vectors veca= hati - hatj + hatk, vecb = 2 hati + hatj and vecc = 3hatj - 2hatk let vecx ,vecy, vecz be three in the plane of veca, vecb ; vecb, vecc; vecc, veca respectively, then