Home
Class 12
MATHS
Given four points P1,P2,P3a n dP4 on the...

Given four points `P_1,P_2,P_3a n dP_4` on the coordinate plane with origin `O` which satisfy the condition `( vec (O P))_(n-1)+( vec(O P))_(n+1)=3/2 vec (O P)_(n)`. If P1 and P2 lie on the curve xy=1 , then prove that P3 does not lie on the curve

Text Solution

Verified by Experts

(i) Put n=2 in `vec(OP)_(n-1)+ vec(OP) _(n+1)= (3)/(2) vec(OP)_n`
`" "vec(OP)_3= (3)/(2) vec(OP)_2- vec(OP)_1" "`(i)
`" "vec(OP)_1= ahati+ (1)`
`{:(vec(OP)_1= ahati+ (1)/(a) hatj),(vec(OP)_2= bhati+ (1)/(b)hatj):}}ab ne 0`
`therefore " "vec(OP)_3 = (3)/(2) (bhati+ (1)/(b) hatj)- (ahati+ (1)/(a) hatj)`
`" "= ((3b)/(2)-a) hati+ ((3)/(2b) - (1)/(a) )hatj`
If `P_3` lies on xy=1, we have
`" "((3b)/(2)-a)((3)/(2b)- (1)/(a))= 1`
or `" "(3b-2a)(3a-2b) = 4ab`
or `" "9ab-6b^(2) - 6a^(2) + 4ab = 4ab`
or `" "2a^(2) - 3ab+ 2b^(2)=0`
which is not possible as Discriminant `lt 0 (a= 0 and b=0` not possible)
(ii) `vec(OP) = cos alpha hati+ sinbeta hatj`
`" "vec(OP)_2 = cos beta hati+ sinbetahatj`
`therefore " "vec(OP)_3= (3)/(2) (cosbeta hati+ sinbeta hatj) - (cosalpha hati+ sin alpha hatj)`
`" "= ((3)/(2) cos beta - cos alpha)hati + ((3)/(2) sin beta-sinalpha) hatj`
Since `P_3` lies on `x^(2) + y^(2)=1`, we have
`((3)/(2) cos beta - cosalpha)^(2) + ((3)/(2) sinbeta-sinalpha)^(2)=1`
or `" "(9)/(4) + 1-3(cosbeta cosalpha + sin beta sinalpha )=1`
or `" "(9)/(4) -3 cos (beta-alpha)=0 rArr cos (beta -alpha)=(3)/(4)" "` (ii)
Put n=3 in the given relation.
`vec(OP)_2 + vec(OP)_4 = (3)/(2) vec(OP)_3`
or `" " vec(OP)_4 = (3)/(2) vec(OP)_3-vec(OP)_2`
`" "=(3)/(2) ((3)/(2) vec(OP)_2-vec(OP)_1)-vec(OP)_2`
`" "=(5)/(4) vec(OP)_2- (3)/(2) vec(OP)_1`
`" "= (5)/(4) (cosbeta hati+sin betahatj) - (3)/(2) (cosalpha hati+ sin alpha hatj)`,
Which lies on `x^(2)+y^(2)=1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 1.2|7 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

If x ,1,a n dz are in A.P. and x ,2,a n dz are in G.P., then prove that x ,a n d4,z are in H.P.

Let vec r_1, vec r_2, vec r_3, .....vec r_n be the position vectors of points P_1,P_2, P_3 ,......P_n relative to the origin O . If the vector equation a_1 vec r_1+a_2 vec r_2+.....a_n vec r_n=0 hold, then a similar equation will also hold w.r.t. to any other origin provided a) a_1+a_2+......a_n=n b) a_1+a_2+....a_n=1 c) a_1+a_2+....a_n=0 d) a_1=a_2=a_3+a_n=0

If .^(2n+1)P_(n-1): .^(2n-1)P_(n)=3:5 , find n.

Let P M be the perpendicular from the point P(1,2,3) to the x-y plane. If vec O P makes an angle theta with the positive direction of the z- axis and vec O M makes an angle phi with the positive direction of x- axis, w h e r eO is the origin and thetaa n dphi are acute angels, then a. costhetacosphi=1//sqrt(14) b. sinthetasinphi=2//sqrt(14) c. ""tanphi=2 d. tantheta=sqrt(5)//3

If n be a positive interger and p_(n) denotes the product of the binomial coefficients in the expansion of (1+x)^(n)," Prove that, "(P_(n+1))/(P_(n))=(n+1)^(n)/(n!) .

If P_n is the sum of a GdotPdot upto n terms (ngeq3), then prove that (1-r)(d P_n)/(d r)=(1-n)P_n+n P_(n-1), where r is the common ratio of GdotPdot

The projection of point P( vec p) on the plane vec r. vec n=q is ( vec s) , then a. vec s=((q- vec p. vec n) vec n)/(| vec n|^2) b. vec s=p+((q- vec p. vec n) vec n)/(| vec n|^2) c. vec s=p-(( vec p. vec n) vec n)/(| vec n|^2) d. vec s=p-((q- vec p. vec n) vec n)/(| vec n|^2)

If the vectors 3 vec p+ vec q ;5p-3 vec qa n d2 vec p+ vec q ;4 vec p-2 vec q are pairs of mutually perpendicular vectors, then find the angle between vectors vec pa n d vec qdot

Given that A_1,A_2,A_3, A_n are n points in a plane whose coordinates are x_1,y_1),(x_2,y_2) ,(x_n ,y_n), respectively. A_1A_2 is bisected at the point P_1,P_1A_3 is divided in the ratio A :2 at P_2,P_2A_4 is divided in the ratio 1:3 at P_3,P_3A_5 is divided in the ratio 1:4 at P_4 , and so on until all n points are exhausted. Find the final point so obtained.