Home
Class 12
MATHS
In a quadrilateral P Q R S , vec P Q= ve...

In a quadrilateral `P Q R S , vec P Q= vec a , vec Q R = vec b , vec S P= vec a- vec b ,M` is the midpoint of ` vec Q Ra n dX` is a point on `S M` such that `S X=4/5S Mdot` Prove that `P ,Xa n dR` are collinear.

Text Solution

Verified by Experts

`vec(OM) = (vecb)/(2) rArr vec(PM) = veca + (vecb)/(2)`

`vec(SM) = vec(PM) -vec(PS) = 2veca-(1)/(2) vecb`
`vec(SX) = (4)/(5) vec(SM) = (8)/(5) veca - (2)/(5) vecb`
`vec(PX)= vec(PS) + vec(SX)`
`" "=-veca+vecb+ (8)/(5) veca- (2)/(5) vecb= (3)/(5) (veca+ vecb)`
Also `vec(PR) = vec(PQ) + vec(QR) = veca+ vecb= (5)/(3) vec(PX)`
Hence P, X and R are collinear.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 1.2|7 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

if vec (AO) + vec (O B) = vec (B O) + vec (O C) ,than prove that B is the midpoint of AC .

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is parallel to vec b- vec c

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

If vec(p) is a unit vector and ( vec (x) - vec(p)). (vec(x)+vec(p)) = 8 , then find |vec (x)|

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=sqrt3a n d| vec b|=sqrt2. Then vec r =?

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=sqrt3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then 1. vec a , vec b ,a n d vec c can be coplanar 2. vec a , vec b ,a n d vec c must be coplanar 3. vec a , vec b ,a n d vec c cannot be coplanar 4.none of these