Home
Class 12
MATHS
If non-zero vectors a annd b are equally...

If non-zero vectors a annd b are equally inclined to coplanar vector c, then c can be

A

`(|veca|)/(|veca|+2|vecb|)veca + (|vecb|)/(|veca| + |vecb|) vecb`

B

`(|vecb|)/(|veca| + |vecb|) veca + (|veca|)/(|veca|+ |vecb|) vecb`

C

`(|veca|)/(|veca|+2|vecb|)veca + (|vecb|)/(|veca|+ 2|vecb|)vecb`

D

`(|vecb|)/(2|veca| + |vecb|) veca + (|veca|)/(2|veca|+ |vecb|) vecb`

Text Solution

Verified by Experts

The correct Answer is:
B, D

Since `veca and vecb` are equally inclined to `vecc, vecc` must be of the form `t((veca )/(|veca|)+ (vecb)/(|vecb|))`.
Now `(|vecb|)/(|veca | + |vecb|) veca + (|veca|)/(|veca| + |vecb|) vecb`
`" " = (|veca||vecb|)/(|veca| + |vecb|) ((veca)/(|veca|)+ (vecb)/(|vecb|))`
Also, `(|vecb|)/(2|veca|+ |vecb|) veca + (|veca|)/(2|veca|+|vecb|) vecb`
`" "= (|veca||vecb|)/(2|veca|+ |vecb|)((veca)/(|veca|)+ (vecb)/(|vecb|))`
Other two vectors cannot be written in the form
`t((veca)/(|veca|)+ (vecb)/(|vecb|))`.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

If non-zero vectors vec a and vec b are equally inclined to coplanar vector vec c , then vec c can be a. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+| vec b|) vec b b. (| vec b|)/(| vec a|+| vec b|)a+(| vec a|)/(| vec a|+| vec b|) vec b c. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+2| vec b|) vec b d. (| vec b|)/(2| vec a|+| vec b|)a+(| vec a|)/(2| vec a|+| vec b|) vec b

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is 0 b. 1 c. -sqrt(3) d. sqrt(3)

Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equally inclined to one another at an angle theta then [ veca vecb vecc ] in terms of θ is equal to :

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc) is

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

If vec a , vec b and vec c are any three non-coplanar vectors, then prove that points are collinear: veca+ vecb+vecc , 4veca+3vecb ,10veca+7vec b-2vecc .