Home
Class 12
MATHS
If A(-4,0,3)a n dB(14 ,2,-5), then which...

If `A(-4,0,3)a n dB(14 ,2,-5),` then which one of the following points lie on the bisector of the angle between ` vec O Aa n d vec O B(O` is the origin of reference )? a. `(2,2,4)` b. `(2, 11 ,5)` c. `(-3,-3,-6)` d. `(1,1,2)`

A

`(2, 2, 4)`

B

`(2, 11, 5)`

C

`(-3, -3, -6)`

D

`(1, 1, 2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`vec(OA) = -4hati + 3hatk, vec(OB) = 14hati + 2hatj- 5hatk`
`hata = (-4hati+3hatk)/(5), hatb = (14hati + 2hatj- 5hatk)/(15)`
`vecr= (lamda )/(15) [-12hati+ 9hatj + 14hati + 2hatj -5hatk]`
`" " = (lamda)/(15) [2hati +2hatj+4hatk]`
`" "= (2lamda)/(15) [ hati +hatj +2hatk]`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

If A(-4,0,3) and B(14 ,2,-5), then which one of the following points lie on the bisector of the angle between vec OA and vec OB (O is the origin of reference )? a. (2,2,4) b. (2, 11 ,5) c. (-3,-3,-6) d. (1,1,2)

If vec aa n d vec b are two vectors of magnitude 1 inclined at 120^0 , then find the angle between vec ba n d vec b- vec adot

If | vec a+ vec b|<| vec a- vec b|, then the angle between vec aa n d vec b can lie in the interval a. (pi//2,pi//2) b. (0,pi) c. (pi//2,3pi//2) d. (0,2pi)

If A(-2,1),B(2,3)a n dC(-2,-4) are three points, find the angle between B Aa n dB Cdot

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=sqrt3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

The centre of the circle given by vec r.( hat i+2 hat j+2 hat k)=15a n d| vec r.( hat j+2 hat k)|=4 is a. (0,1,2) b. (1,3,4) c. (-1,3,4) d. none of these

If 2vec(AC)=3vec(CB) , then prove that 2vec(OA)+3vec(OB)=5vec(OC) where O is the origin.

Prove that the resultant of two forces acting at point O and represented by vec O B and vec O C is given by 2 vec O D ,where D is the midpoint of BC.

If vec aa n d vec b are any two unit vectors, then find the greatest positive integer in the range of (3| vec a+ vec b|)/2+2| vec a- vec b| .

A point O is the centre of a circle circumscribed about a triangle A B Cdot Then vec O Asin2A+ vec O Bsin2B+ vec O Csin2C is equal to