Home
Class 12
MATHS
In a four-dimensional space where unit...

In a four-dimensional space where unit vectors along the axes are ` hat i , hat j , hat k` and `hat l`, and `vec a_1, vec a_2, vec a_3, vec a_4` are four non-zero vectors such that no vector can be expressed as a linear combination of others and `(lambda-1)( vec a_1- vec a_2)+mu( vec a_2+ vec a_3)+gamma( vec a_3+ vec a_4-2 vec a_2)+ vec a_3+delta vec a_4=0,` then

A

`lamda =1`

B

`mu = -2//3`

C

`gamma = 2//3`

D

`delta = 1//3`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`(lamda -1) (veca_1 - veca_2) + mu(veca_2 + veca_3)+ gamma (veca_3 + veca_4- 2veca_2) + veca_3 + deltaveca_4 = vec0`
i.e., `(lamda -1) veca_1 + (1-lamda +mu- 2gamma)veca_2 + (mu + gamma +1)veca_3 + ( gamma + delta) veca_4=vec0`
Since `veca_1, veca_2, veca_3 and veca_4` are linearly inependent, we have
`lamda-1 =0, 1-lamda + mu - 2gamma =0, mu+gamma +1=0 and gamma +delta =0`
i.e., `lamda =1, mu=2gamma, mu +gamma+1 =0, gamma +delta =0`
Hence, `lamda =1, mu = - (2)/(3), gamma = - (1)/(3), delta = (1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

What is the unit vector parallel to vec a=3 hat i+4 hat j-2 hat k ? What vector should be added to vec a so that the resultant is the unit vector hat i ?

If vec a= hat i+ hat j+ hat k and vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec a . vec c=2 and vec axx vec c= vec bdot

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a

Given three vectors vec a=6 hat i-3 hat j , vec b=2 hat i-6 hat ja n d vec c=-2 hat i+21 hat j such that vecalpha= vec a+ vec b+ vec c Then the resolution of the vector vecalpha into components with respect to vec aa n d vec b is given by a. 3 vec a-2 vec b b. 3 vec b-2 vec a c. 2 vec a-3 vec b d. vec a-2 vec b

If aa n db are nonzero non-collinear vectors, then [ vec a vec b hat i] hat i+[ vec a vec b hat j] hat j+[ vec a vec b hat k] hat k is equal to a. vec axx vec b b. vec a+ vec b c. vec a- vec b d. vec bxx vec a

Find vec adot vec b when: vec a= hat j- hat k\ a n d\ vec b=2 hat i+3 hat j-2 hat k

Find the resultant of vectors vec a= hat i- hat j+2 hat k and vec b= hat i+2 hat j-4 hat kdot Find the unit vector in the direction of the resultant vector.

The angles of triangle, two of whose sides are represented by vectors sqrt(3)( vec axx vec b) \a n d \ vec b-( hat adot vec b) hat a ,w h e r e vec b is a non zero vector and hat a is unit vector in the direction of vec a , are

Let vec a=- hat i- hat k , vec b=- hat i+ hat ja n d vec c= hat i+2 hat j+3 hat k be three given vectors. If vec r is a vector such that vec rxx vec b= vec cxx vec b and vec r dot vec a=0, then find the value of vec rdot vec bdot

Prove that ( vec a.( vec bxx hat i)) hat i+( vec a.( vec bxx hat j)) hat j+( vec a.( vec bxx hat k)) hat k= vec axx vec b .