Home
Class 12
MATHS
Statement 1 : veca = 3 veci + p vecj +3v...

Statement 1 : `veca = 3 veci + p vecj +3veck and vecb = 2veci + 3vecj + qveck` are parallel vectors if `p = 9//2 and q =2`.
Statement 2 : If `veca= a_1 veci + a_2 vecj + a_3 veck and vecb = b_1 veci + b_2 vecj + b_3veck` are parallel, then `(a_1)/(b_1) = (a_2)/(b_2)= (a_3)/(b_3) `.

A

Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B

Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

C

Statement 1 is true and Statement 2 is false.

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
A

`(3)/(2) = (p)/(q) = (3)/(q) rArr p = (9)/(2) and q =2 `
Thus, both the statements are true and Statement 2 is the correct explanation for Statement 1.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise MATRIX-MATCH TYPE|3 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

Statement 1: vec a=3 vec i+p vec j+3 vec k and vec b=2 vec i+3 vec j+q vec k are parallel vectors if p=9//2a n dq=2. Statement 2: if vec a=a_1 vec i+a_2 vec j+a_3 vec ka n d vec b=b_1 vec i+b_2 vec j+b_3 vec k are parallel, then (a_1)/(b_1)=(a_2)/(b_2)=(a_3)/(b_3)dot Which of the following Statements is/are correct ?

veca =3veci+4vecj-6veck vecb =2veci+5vecj+3veck Find veca xx vecb

veca =2veci+3vecj-2veck vecb =4veci-vecj+5veck Find veca xx vecb

A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + veck and perpendicular to veci + vecj + veck is _______

Find the value of lambda so that the plane vecr. (veci + 2vecj + 3veck) = 7 and vecr.(lambdaveci + 2vecj - 7veck) = 26 are perependicular to each other.

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

In a four-dimensional space where unit vectors along the axes are hat i , hat j , hat k and hat l , and vec a_1, vec a_2, vec a_3, vec a_4 are four non-zero vectors such that no vector can be expressed as a linear combination of others and (lambda-1)( vec a_1- vec a_2)+mu( vec a_2+ vec a_3)+gamma( vec a_3+ vec a_4-2 vec a_2)+ vec a_3+delta vec a_4=0, then

If A_1 , A_2 , A_3 are mutually exclusive and exhaustive, then P(A_1) + P(A_2) + P(A_3) equal______

If vec a=a_1 hat i+a_2 hat j+a_3 hat k ; vec b=b_1 hat i+b_2 hat j+b_3 hat k , . vec c=c_1 hat i+c_2 hat j+c_3 hat k and [3 vec a+ vec b """ 3 vec b+ vec c """" 3 vec c+ vec a]=lambda[vec a vec b vec c] , then find the value of lambda/4 .

A non vector veca is parallel to the line of intersection of the plane determined by the vectors veci,veci+vecj and thepane determined by the vectors veci-vecj,veci+veck then angle between veca and veci-2vecj+2veck is = (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4