Home
Class 12
MATHS
Suppose that vec p,vecqand vecr are thr...

Suppose that `vec p,vecqand vecr` are three non- coplaner in `R^(3)` ,Let the components of a vector`vecs` along `vecp , vec q and vecr` be 4,3, and 5, respectively , if the components this vector `vec s` along `(-vecp+vec q +vecr),(vecp-vecq+vecr) and (-vecp-vecq+vecr)` are x, y and z , respectively , then the value of `2x+y+z` is

Text Solution

Verified by Experts

The correct Answer is:
9

According to question `vecs = 4 vecp + 3vecq + 5 vecr and vecs = x( - vecp + vecq + vecr ) + y(vecp - vecq + vecr) + z( -vecp - vecq + vecr)`
` therefore -x +y -z =4" "` (1)
`" " x -y -z =3" "`(2)
`" "x+y+z=5" "` (3)
Adding (1) and (2), we get
`z = - (7)/(2)`
Adding (2) and (3), we get
`x = 4`
Adding (1) and (3), we get
` y = 9//2`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise ARCHIVES SUBJECTIVE TYPE|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise FILL IN THE BLANKS|2 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE PUBLICATION|Exercise MATRIX-MATCH TYPE|3 Videos
  • INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|762 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos

Similar Questions

Explore conceptually related problems

Suppose that vec(p), vec(q) and vec(r) are three non-coplanar vectors in R. Let the components of a vector vec(s) along vec(p), vec(q) and vec(r) be 4, 3 and 5 respectively. If the components of this vector vec(s) " along" (-vec(p) + vec(q) + vec(r)), (vec(p) - vec(q) + vec(r)) and (-vec(p) - vec(q) + vec(r)) are x,y and z respectively, then the value of 2x + y + z is

If the projections of vector vec a on x -, y - and z -axes are 2, 1 and 2 units ,respectively, find the angle at which vector vec a is inclined to the z -axis.

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

If vec p is a unit vector and (vec x- vecp).(vec x+ vecp) = 8 then find |vec x|

If vecp xx vecq = vecm xx vec n and vecp xx vec m = vecq xx vecn , show that vecp- vecn is parallel to vecq - vecm where vecp ne vecn and vecq ne vecm .

vec u , vec v and vec w are three non-coplanar unit vecrtors and alpha,beta and gamma are the angles between vec u and vec v , vec v and vec w ,a n d vec w and vec u , respectively, and vec x , vec y and vec z are unit vectors along the bisectors of the angles alpha,betaa n dgamma , respectively. Prove that [ vecx xx vec y vec yxx vec z vec zxx vec x]=1/(16)[ vec u vec v vec w]^2sec^2(alpha/2)sec^2(beta/2)sec^2(gamma/2) .

If veca and vecb are othogonal unit vectors, then for a vector vecr non - coplanar with veca and vecb vector vecr xx veca is equal to

If vec p , vec q , vec r denote vector vec bxx vec c , vec cxx vec a , vec axx vec b , respectively, show that vec a is parallel to vec qxx vec r , vec b is parallel vec rxx vec p , vec c is parallel to vec pxx vec q .