Home
Class 12
MATHS
Show that the minimum value of (x+a)(x+b...

Show that the minimum value of `(x+a)(x+b)//(x+c)dotw h e r ea > c ,b > c ,` is `(sqrt(a-c)+sqrt(b-c))^2` for real values of `x >-cdot`

Text Solution

Verified by Experts

Given expression is `(x + a) (x + b) //(x + c).`
Let `x + c + y `. Then
`((x + a) (x + a))/((x + c)) = ((y+ (a - c))(y+(b-c)))/(y)`
` = (y^(2)+ [(a - c)+(b -c)]y+(b-c)(b - c))/(y)`
` = y+((a - c)+(b -c))/y+(b-c)+(b - c)`
`=[sqrt(y)-sqrt((a-c)(b-c))/(y)]^(2) + [sqrt(a-c)+sqrt(b-c)]^(2)`
` =ge[sqrt(a - c)+sqrt(b -c)]^(2)`
Hence, the least value is `[sqrt(a - c)+sqrt(b -c)]^(2)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.2|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION|121 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

Prove that the minimum value of ((a+x)(b+x))/((c+x))a ,b > c ,x > -c is (sqrt(a-c)+sqrt(b-c))^2

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0

If minimum value of f(x)=x^(2)+2bx +2c^(2) is greater than maximum value of g(x)=-x^(2)-2cx +b^(2) , then for real value of x-

The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is a. 3abc b. 6abc c. abc d. 4abc

Show that for all real value of x, c-sqrt(a^(2) + b^(2)) le a cos x + b sin x + c le c + sqrt(a^(2) + b^(2))

Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive numbers a ,b ,c) is (a) 1 (b) 2 (c) 4 (d) 6

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b) , if a=4, b=9 and f(x)=sqrt(x) , then the value of c is -

If c!=0 and the equation p//(2x)=a//(x+c)+b//(x-c) has two equal roots, then p can be a. (sqrt(a)-sqrt(b))^2 b. (sqrt(a)+sqrt(b))^2 c. a+b d. a-b

If the roots of the equation x^3+P x^2+Q x-19=0 are each one more that the roots of the equation x^3-A x^2+B x-C=0,w h e r eA ,B ,C ,P ,a n dQ are constants, then find the value of A+B+Cdot

If fig shows the graph of f(x)=a x^2+b x+c ,t h e n Fig a. c b. b c >0 c. a b >0 d. a b c<0