Home
Class 12
MATHS
If f(x)=(a1x+b1)^2+(a2x+b2)^2+...+(an x+...

If `f(x)=(a_1x+b_1)^2+(a_2x+b_2)^2+...+(a_n x+b_n)^2` , then prove that `(a_1b_1+a_2b_2+...+a_n b_n)^2lt=(a_1^ 2+a_2^ 2+...+a_ n^2)(b_1^ 2+b_2^ 2+..+b_ n^2)dot`

Text Solution

Verified by Experts

Given,
`f(x) = (a_(1)x + b_(1))^(2) + (a_(2)x+b_(2))^(2) + ...+ (a_(n)x + b_(n))^(2)` (1)
or `f(x) = (a_1^(2) + a_(2)^(2) + ... + a_(n)^(2))x^(2) + 2(a_(1) b_(1) + a_(2) b_(2) + ... + a_(n) b_(n) x + (b_(1)^(2) + b_(2)^(2) + ... + b_(n)^(2) )` (2)
From (1), `f(x) ge0, AA x in` R . Hence, from (2), we have
` (a_1^(2) + a_(2)^(2) + ... + a_(n)^(2))x^(2) + 2(a_(1) b_(1) + a_(2) b_(2) + ... + a_(n) b_(n)) x + (b_(1)^(2) + b_(2)^(2) + ... + b_(n)^(2) )ge 0 AAx in`R
Discrimnant of tis corresponding equation is
D `le 0 (therefore` cofficient of `x^(2)` is positive )
`(a_(1)b_(1) + a_(2) b_(2) + ... + a_(n)b_(n))^(2) le (a_1^(2) + a_(2)^(2) + ... + a_(n)^(2)) (b_(1)^(2)+b_(2)^(2) + ... + b_(n)^(2))`
or `(a_(1)b_(1) + a_(2) b_(2) + ... + a_(n)b_(n))^(2) le (a_1^(2) + a_(2)^(2) + ... + a_(n)^(2)) (b_(1)^(2)+b_(2)^(2) + ... + b_(n)^(2))`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.2|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION|121 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+.......+a_(2n)x^(2n) , then prove that a_0+a_2+a_4+....+a_(2n)=1/2(3^n+1) .

If the points ( a_1,b_1),(a_2,b_2) and (a_1+a_2,b_1+b_2) are collinear ,show that a_1b_2=a_2b_1 .

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If (1+x)^n=a_0+a_1x+a_2x^2+…..+a_nx^n then show that (a_0-a_2+a_4-……)^2+(a_1-a_3+a_5-……)^2=a_0+a_1+a_2+……a_n

If |a_1sinx+a_2sin2x++a_nsinn x|lt=|sinx| for x in R , then prove that |a_1+2a_2+3a_3+n a_n|lt=1

If a_1. a_2 ....... a_n are positive and (n - 1) s = a_1 + a_2 +.....+a_n then prove that (a_1 + a_2 +....+a_n)^n ge (n^2 - n)^n (s - a_1) (s - a_2)........(s - a_n)

If a_1,a_2,a3,...,a_n are in A.P then show that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n)

If S=a_1+a_2+......+a_n,a_i in R^+ for i=1 to n, then prove that S/(S-a_1)+S/(S-a_2)+......+S/(S-a_n) ge n^2/(n-1), AA n ge 2

If a_1,a_2,.....a_n are in H.P., then the expression a_1a_2 + a_2a_3 + ... + a_(n-1)a_n is equal to