Home
Class 12
MATHS
Prove that if 2a0^2<15 a , all roots of ...

Prove that if `2a_0^2<15 a ,` all roots of `x^5-a_0x^4+3a x^3+b x^2+c x+d=0` cannot be real. It is given that `a_0,a ,b ,c ,d in Rdot`

Text Solution

Verified by Experts

Let
`f(x) = x^(5) - a_(0) x^(4) + 3ax^(3) + bx^(2) + cx + d`
`therefore f'(x) = 5x^(4) - 4a_(0)x^(3) + 9ax^(2) + 2bx + c`
`rArr f''(x) = 20x^(3) - 12a_(0)x^(2) + 18ax^(2) + 2b `
`rArr ` f'''(x) = 60x^(2) - 24a_(0)x + 18a`
`rArr f''''(x) = 6(10x^(2) - 4a_(0)x + 3a)` ...(1)
from Roll's theorem, we know that between any two toots of the equation `f(x) = 0`, there exists at least one root of `f'(x) = 0` ,
Discriminant of polynomial (1) is
`D - 16_(0)^(2) - 4xx10xx3a`
`rArr D - 8(2a_(0)^(2) - 15a)lt [As 2a_(0)^(2) - 15a lt 0`given ]
Hence, `f'''(x) = 0` has non-real roots.
Therefore, `f''(x) = 0` has not all real roots.
With similar reasoning all the roots of `f'(x) = 0 and f(x) = 0` are not all real.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.2|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise ILLUSTRATION|121 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

Prove that (2nC_0)^2-(2nC_1)^2+(2nC_2)^2+.....+(2nC_2n)^2=(-1)^n2nC_n

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

Prove that, C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.......+C_(n)^(2)=((2n)!)/(n!)^(2)

Prove that, int_(0)^(2pi)(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx=pi^(2) .

If f(x+f(y))=f(x)+yAAx ,y in R and f(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dx .

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)/x dx

Prove that, int_(0)^(2pi)(cosx)/(1+sin^(2)x)dx=0

Prove that, int_(0)^(pi)f(sinx)dx=2int_(0)^((pi)/(2))f(sinx)dx .

Prove that in any /_\ABC . (b-c)cot(A/2)+(c-a)cot (B/2)+(a-b)cot (C/2)=0