Home
Class 12
MATHS
Let the equation x^(5) + x^(3) + x^(2) ...

Let the equation `x^(5) + x^(3) + x^(2) + 2 = 0` has roots `x_(1), x_(2), x_(3), x_(4) and x_(5),` then find the value of `(x_(1)^(2)-1)(x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).`

Text Solution

Verified by Experts

The correct Answer is:
5

`x^(5) + x^(3) + x^(2) + 2 = (x -x_(1)) (x -x_(2))(x -x_(3))(x -x_(4))(x -x_(5))`
Putting x = 1, we get,
`5 = (1 -x_(1)) (1 -x_(2))(1 -x_(3))(1 -x_(4))(1 -x_(5))`
Putting x = - 1, we get,
`1 = (-1 -x_(1)) (-1 -x_(2))(-1 -x_(3))(-1 -x_(4))(-1 -x_(5))`
Multiplying, we get,
`5 = (x_(1)^(2) - 1)(x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.3|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.4|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.1|3 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

If x = 1/(2-sqrt3) then find the value of (x^(3) -2x^2 - 7x +4)

The value of int_(0)^(1)4x^(3){(d^(2))/(dx^(2))(1-x^(2))^(5)}dx

If x= (sqrt5+1)/(sqrt5-1) and x = 1/y then find the value of (3x^(2) -7xy + 3y^(2))

If f(x)=x^(9)-2x^(8)-2x^(6)+4x^(5)+x^(4)-2x^(3)+x-1 , then find the value of f(2).

Evaluate lim_(xtooo) ((7x^(2)+1)/(5x^(2)-1))^((x^(5))/(1-x^(3))).

int_(0)^(3)(2x^(5)+x^(4)-2x^(3)+2x^(2)+1)/((x^(2)+1)(x^(4)-1))dx

If |(x+1,1,1),(2,x+2,2),(3,3,x+3)|=0 , then the value of x is -

Solve : ((x-1)^2(x-2)^3(x-4))/((x+1)(x+3)^4) ge0

Solve the equations : ((x+1)^(3)-(x-1)^(3))/((x+1)^(2)-(x-1)^(2))=2