Home
Class 12
MATHS
Let x ,y ,z in R such that xy+z=6a n xx...

Let `x ,y ,z in R` such that `x_y+z=6a n xx y+y z+z x=7.` Then find the range of values of `x ,y ,a n dzdot`

Text Solution

Verified by Experts

The correct Answer is:
` a in (- infty, - 1//2 )sup [ 4, nfty)`

x,y,z,`in` R
` x + y + z = 6 and xy + yz + zx = 7`
`rArr y (6 - y - z) + yz + z (6 - y - z) = 7`
`rArr - y^(2) + (6 - z + z - z) y + z (6 -z) - 7 = 0`
`rArr y^(2) + (z - 6 )y + 7 + z (z - 6) = 0`
Now, y is real. Therefore ,
`(z - 6)^(2) - 4 [7 + z (z - 6)] ge 0 `
or ` 3z^(2) - 12z - 8 le 0`
or `(12 - sqrt(144 + 96))/(6) le zle (12 + sqrt(144 + 96))/(6)`
or ` (6 - 2 sqrt(15))/(3) le z le (6 + 2 sqrt(15))/(3)`.
From symmetry, x and y have same range.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.13|9 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type : Exercise|89 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.11|8 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

Let x ,y ,z in R such that x+y+z=5 and x y+y z+z x=3. Thenwhat is the largest value x can have?

If x,y,z, in R such that x+y+z=4, x^2+y^2+z^2=6 then find the range of x.

Let x,y,z be real variable satisfying the equations x+y+z=6 and xy+yz+zx=7. Then find the range in which the variable can lie.

If y z+z x+x y=12 , and x , y , z are positive values, find the greatest value of x y zdot

Find the product of (5x - y +z) (5x - y +z)

Solve sin^2x+cos^2y=2sec^2z for x , y ,a n dzdot

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x : y = 2 : 3 , y : z = 4 : 7 , then find x : y : z .

If x,y,z in Z then (x +y) z = x, z +y , z - this law is called

If x+y+z=12 and x^2+y^2+z^2=96 and 1/x+1/y+1/z=36 , then find the value of x^3+y^3+z^3