Home
Class 12
MATHS
If x is real and (x^2+2x+c)//(x^2+4x+3c)...

If `x` is real and `(x^2+2x+c)//(x^2+4x+3c)` can take all real values, of then show that `0lt=clt=1.`

Text Solution

Verified by Experts

The correct Answer is:
` a in ( - (11)/(3), - 2 sqrt(2)]`

Let `y = (x^(2) + 2x + c ) /(x^(2) + 4x + 3c)`
or ` (y - 1 )x^(2) + (4y - 2) x + 3cy - c = 0`
Now , x is real . Hence,
`D = (4y - 2)^(2) - 4 (y - 1) (3cy - c) ge 0 AA y in ` R
or ` (2y - 1 )^(2) - (y - 1)(3cy - c) ge 0 , AA y in ` R
or ` (4 - 3c)y^(2) + (-4 + c + 3c) y + 1 - c ge 0, AA y in ` R.
` or 4-3c gt 0 and (4c - 4)^(2) - 4 (4 - 3c)(1 - c) le 0`
or ` c lt (4)/(3) and 4 (c - 1)^(2) - (4-3c)(1 -c) le 0 `
or ` c lt (4)/(3) and (c - 1)xx (4c - 4 + 4 - 3c)le 0`
or ` c lt (4)/(3) and (c - 1)(c)le 0`
or ` c lt (4)/(3) and - le cle 1`
or ` 0 le c le 1` .
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.13|9 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Single Correct Answer Type : Exercise|89 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.11|8 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

If 2f(x) + 3f(-x) = 15 - 4x for all real values of x , then show that f(x) = 3 + 4x.

If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2| , then the set of all real values of x is

If ((x-5)(x^2-2x+1))/((x-7)(x^2+2x+3)) is positive for all real values of x, show that x has no value between 5 and 7.

If f(x) =sin x-a sin 2x-(1)/(3) sin 3x+2ax is an increasing function for all real values of x, show that, a gt 1 .

If f(x)= x^(3) + ax^(2) + bx + c is an increasing function for all real values of x then-

If x is real , show that the expressions (x^2-ab)/(2x-a-b) has no real value between a and b.

If (x^2+a x+3)/(x^2+x+a) takes all real values for possible real values of x , then a. a^3-9a+12<=0 b. 4a^3+39 < 0 c. ageq1/4 d. a<1/4

let f(x)=-x^3+(b^3-b^2+b-1)/(b^2+3b+2) if x is 0 to 1 and f(x)=2x-3 if x is 1 to 3 .All possible real values of b such that f (x) has the smallest value at x=1 are

If x is real can the value of 3+2x-x^2 be greater than 4,

If x be real , show that the value of (2x^2-2x+4)/(x^2-4x+3) cannot lie between (-7) and 1.