Home
Class 12
MATHS
Suppose A, B, C are defined as A = a^(2)...

Suppose A, B, C are defined as `A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2)`, and `C = a^(2)c + ac^(2) - b^(2)c - bc^(2)`, where `a gt b gt c gt 0` and the equation `Ax^(2) + Bx + C = 0` has equal roots, then a, b, c are in

A

A.P.

B

G.P.

C

H.P.

D

A.G.P.

Text Solution

Verified by Experts

The correct Answer is:
3

A = a(b - c) (a + b + c)
B = b(c - a) ( a + b + c)
C = c(a - b) (a + b + c)
Now, `Ax^(2) + Bx + C = 0`
`rArr (a + b + c) {a(b - c)x^(2) + b(c - a)x + c(a - b) = 0`
Given that roots are equal. Hence,
D = 0
`rArr b^(2)(c - a)^(2) - 4ac(b - c)(a - b) = 0`
or `b^(2)c^(2) - 2ab^(2)c + b^(2)a^(2) - 4a^(2)bc + 4acb^(2) + 4a^(2)c^(2) - 4abc^(2) = 0`
or `b^(2)c^(2) + b^(2)a^(2) + 4a^(2)c^(2) + 2ab^(2)c - 4a^(2)bc - 4abc^(2) = 0`
or `(bc + ab - 2ac)^(2) = 0`
or `bc + ab = 2ac`
`rArr 1/a + 1/c = 2/b`
Hence, a, b, c are in H.P.
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|38 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Linked Comprechension Type|37 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERCISE 2.13|9 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2 , B=b^2c+b c^2-a^2b-a b^2 - bc^2, and C=a^2c +'a c^2-b^2' c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot

If the roots of the equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal,then a,b,c are in

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

If a,b,c in R : a ne 0 and the quadratic equation ax^2+bx+c =0 has no real root, then show that (a+b+c)c gt 0

If (b^(2) + c^(2) - a^(2))/(2bc), (c^(2) + a^(2) - b^(2))/(2ca), (a^(2) + b^(2) - c^(2))/(2ab) are in A.P. and a+b+c = 0 then prove that a(b+c-a), b(c+a-b), c(a+b-c) are in A.P.

Find the product (2a + b+c) (4a ^(2) + b ^(2) + c ^(2) - 2ab -bc -2ca)

If a/b = b/c = c/d , then prove that (a^(2) + b^(2) + c^(2))(b^(2) + c^(2)+d^(2)) = (ab + bc cd)^(2)

If a + b +c =9 and ab + bc + ca =26, then find a ^(2) + b ^(2) + c ^(2).

If a , b , c are positive numbers such that a gt b gt c and the equation (a+b-2c)x^(2)+(b+c-2a)x+(c+a-2b)=0 has a root in the interval (-1,0) , then

In triangle ABC, if a^(2) + b^(2) +c^(2) -bc -ca -ab=0, then the value of sin ^(2)A+ sin ^(2)B+sin ^(2)C is -

CENGAGE PUBLICATION-THEORY OF EQUATIONS-Single Correct Answer Type : Exercise
  1. (B) (2, 9/4) If two roots of the equation (a-1) (x^2 + x + 1 )^2-(a + ...

    Text Solution

    |

  2. If b(1)b(2) = 2(c(1) + c(2)), then at least one of the equations x^(2)...

    Text Solution

    |

  3. Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), ...

    Text Solution

    |

  4. If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' a...

    Text Solution

    |

  5. If alpha,beta are the roots of the equation a x^2+b x+c=0, then the va...

    Text Solution

    |

  6. The quadratic x^2+a x=b+1=0 has roots which are positive integers, the...

    Text Solution

    |

  7. If alpha,beta re the roots of a x^2+c=b x , then the equation (a+c y)^...

    Text Solution

    |

  8. If alphaa n dbeta are roots of the equation a x^2+b x+c=0, then the ro...

    Text Solution

    |

  9. If the roots of the equation a x^2-b x+c=0 are alpha,beta, then the ro...

    Text Solution

    |

  10. If a(p+q)^2+2b p q+c=0 and a(p+r)^2+2b p r+c=0 (a!=0) , then which one...

    Text Solution

    |

  11. If alpha,beta are the nonzero roots of a x^2+b x+c=0a n dalpha^2,beta^...

    Text Solution

    |

  12. If the roots of the equation a x^2+b x+c=0 are of the form (k+1)//ka n...

    Text Solution

    |

  13. If alpha, beta are the roots of ax^(2) + bx + c = 0 and alpha + h, bet...

    Text Solution

    |

  14. If one root of x^(2)-x-k=0 is square of the other, then find the value...

    Text Solution

    |

  15. If alpha and beta be the roots of the equation x^(2) + px - 1//(2p^(2)...

    Text Solution

    |

  16. If alpha,beta are the roots of x^2+p x+q=0 and gamma,delta are the roo...

    Text Solution

    |

  17. The value of m for which one of the roots of x^(2) - 3x + 2m = 0 is do...

    Text Solution

    |

  18. If the equation x^2-3p x+2q=0a n dx^2-3a x+2b=0 have a common roots an...

    Text Solution

    |

  19. If alpha,beta are the roots of the equation x^2-2x+3=0 obtain the equa...

    Text Solution

    |

  20. A quadratic equation with integral coefficients has two different prim...

    Text Solution

    |