Home
Class 12
MATHS
Let f(x)=x^(2)+bx+c and g(x)=x^(2)+b(1)x...

Let `f(x)=x^(2)+bx+c` and `g(x)=x^(2)+b_(1)x+c_(1)`
Let the real roots of `f(x)=0` be `alpha, beta` and real roots of `g(x)=0` be `alpha +k, beta+k` fro same constant `k`. The least value fo `f(x)` is `-1/4` and least value of `g(x)` occurs at `x=7/2`
The valueof `b_(1)` is

A

`-5`

B

9

C

`-8`

D

`-7`

Text Solution

Verified by Experts

The correct Answer is:
4

`(beta - alpha) = ((beta + h)-(alpha + h))`
`(beta + alpha)^(2) -4alphabeta = [(beta + h) +(alpha + h)]^(2) - 4(beta + h) (alpha + h)`
`(-b_(1))^(2) - 4c_(1) = (-b_(2))^(2) - 4c_(2)`
`D_(1) = D_(2)`
The least value of f(x) is .
`-(D_(1))/(4) = - (1)/(4) and D_(2) = 1`
Therefore, the least value of
`g(x)` is `-(D_(2))/(4) = -(1)/(4)`
The least value of the of g(x) occurs at
`-(b_(2))/(2)=(7)/(2)` or `b_(2) = -7`
Now, `b_(2)^(2)-4c_(2) = D_(2)`
or ` 49-4c_(2) = 1` or `(48)/(4) = c_(2) or c_(2) = 12`
`rArr x^(2) - 7x + 12 = 0` or `x = 3,4`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise MATRIX MATCH TYPE|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise NUMERICAL VALUE TYPE|43 Videos
  • THEORY OF EQUATIONS

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|38 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE PUBLICATION|Exercise All Questions|291 Videos

Similar Questions

Explore conceptually related problems

Letf(x)= x^2+b_1x+c_1 ,g(x)= x^2+b_2x+c_2 . Real roots fo f(x)=0 be alpha,beta and real roots ofg(x)=0 be alpha+delta,beta+delta .Least value of f(x) be -1/4. Least value of g(x) occurs at x=7/2 The least value of g(x) is

Let f (x)=x^2+b_1x+c_1 and g(x)=x^2+b_2x+c_2 . When f(x)=0 then the real roots of f(x) are alpha,beta and when g(x)=0 then the real roots of g(x) are alpha+h,beta+h . Minimum value of f(x) is -1/4 and when x= 7/2 then value of g(x) will be minimum. Minimum value of g(x) is-

Let f (x)=x^2+b_1x+c_1 and g(x)=x^2+b_2x+c_2 . When f(x)=0 then the real roots of f(x) are alpha,beta and when g(x)=0 then the real roots of g(x) are alpha+h,beta+h . Minimum value of f(x) is -1/4 and when x= 7/2 then value of g(x) will be minimum. Roots of g(x)=0 are-

Let f (x)=x^2+b_1x+c_1 and g(x)=x^2+b_2x+c_2 . When f(x)=0 then the real roots of f(x) are alpha,beta and when g(x)=0 then the real roots of g(x) are alpha+h,beta+h . Minimum value of f(x) is 1/4 and when x= 7/2 then value of g(x) will be minimum. Value of b_2 is-

Let f(x)=ax^(2)+bx+c , g(x)=ax^(2)+qx+r , where a , b , c , q , r in R and a lt 0 . If alpha , beta are the roots of f(x)=0 and alpha+delta , beta+delta are the roots of g(x)=0 , then

If alpha,beta are roots of x^2-3x+a=0 , a in R and alpha <1< beta then find the value of a.

If f(x)=ax^(2)+bx+c and f(x + 1) = f(x) + x + 1, then determine the values of a and b.

If f(x) = 27x^3 + 1/x^3 and alpha, beta are the roots of 3x + 1/x = 2 then

Let alpha , beta be the roots of x^2-x+p=0 and gamma,delta be the roots of x^2-4x+q=0 . If alpha,beta,gamma are in GP , then the integer values of p and q respectively are:

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

CENGAGE PUBLICATION-THEORY OF EQUATIONS-Linked Comprechension Type
  1. If a polynomial f (x) is divided by (x - 3) and (x - 4) it leaves re...

    Text Solution

    |

  2. Let f(x)=x^(2)+bx+c and g(x)=x^(2)+b(1)x+c(1) Let the real roots of ...

    Text Solution

    |

  3. Let f(x)=x^(2)+bx+c and g(x)=x^(2)+b(1)x+c(1) Let the real roots of ...

    Text Solution

    |

  4. Let f(x)=x^(2)+bx+c and g(x)=x^(2)+b(1)x+c(1) Let the real roots of ...

    Text Solution

    |

  5. In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c. The...

    Text Solution

    |

  6. In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c. The...

    Text Solution

    |

  7. In the given figue vertices of DeltaABC lie on y=f(x)=ax^(2)+bx+c. The...

    Text Solution

    |

  8. Let f(x) =4x^2-4ax+a^2-2a+2 be a quadratic polynomial in x,a be any re...

    Text Solution

    |

  9. Let f(x) =4x^2-4ax+a^2-2a+2 be a quadratic polynomial in x,a be any re...

    Text Solution

    |

  10. Let f(x)= 4x^(2) - 4ax + a^(2) - 2a + 2 such that minimum value fo the...

    Text Solution

    |

  11. Consdier the equaiton 2 + |x^(2) + 4x + 3= m , m in R Set of all v...

    Text Solution

    |

  12. Consdier the equaiton 2 + |x^(2) + 4x + 3| = m , m in R Set of all...

    Text Solution

    |

  13. Consdier the equaiton 2 + |x^(2) + 4x + 3|= m , m in R Set of all v...

    Text Solution

    |

  14. If ax^(2)+bx+c=0 have two distinct roots lying int eh interval (0,1),a...

    Text Solution

    |

  15. Consider the quadrationax^(2) - bx + c =0,a,b,c in N which has two di...

    Text Solution

    |

  16. Consider the quadrationax^(2) - bx + c =0,a,b,c in N which has two di...

    Text Solution

    |

  17. Consider the inequation x^(2) + x + a - 9 < 0 The values of the re...

    Text Solution

    |

  18. Consider the inequation x^(2) + x + a - 9 lt 0 The values of the re...

    Text Solution

    |

  19. Consider the inequation x^(2) + x + a - 9 lt 0 The value of the pa...

    Text Solution

    |

  20. Consider the inequation 9^(x) -a3^(x) - a+ 3 le 0, where a is real p...

    Text Solution

    |