Home
Class 12
MATHS
Let complex numbers alpha and 1/alpha li...

Let complex numbers `alpha and 1/alpha` lies on circle `(x-x_0)^2+(y-y_0)^2=r^2 and (x-x_0)^2+(y-y_0)^2=4r^2` respectively. If `z_0=x_0+iy_0` satisfies the equation `2|z_0|^2=r^2+2` then `|alpha|` is equal to

A

`1//sqrt(2)`

B

`1//2`

C

`1//sqrt(7)`

D

`1//3`

Text Solution

Verified by Experts

The correct Answer is:
C

Given circles are
`(x - x_(0))^(2) + (y-y_(0))^(2) = r^(2)`
and `(x-x_(0))^(2) + (y - y_(0))^(2) = 4r^(2)" "(1)`
or `|z-z_(0)| = r`
and `|z-z_(0)| = 2 r`
where `z_(0) - x_(0) + iy_(0)`
Now `alpha` and `(1)/(baralpha)` lies on circle (1) and (2), respectively. Then
` |alpha -z_(0)| = r and |(1)/(baralpha) - z_(0)| = 2r`
`rArr |alpha - z_(0)| = r and |1-baralphaz_(0)| = 2r |baralpha|`
`rArr |alpha -z_(0)| = r and |1-baraz_(0)| = 2r|baralpha|`
`rArr |alpha - z_(0)|^(2) =r^(2) and |1-baralphaz_(0)| = 4r^(2) |alpha|^(2)`
Subtracting, we get
`|1-baralphaz_(0)|^(2) - |alpha -z_(0)|^(2) = 4r^(2) |alpha| - r^(2)`
`rArr 1+ |alphaz_(0)|^(2) -baralphaz_(0) - alphabarz_(0) -(|alpha|^(2) + |z_(0)|^(2) -baralphaz_(0) -alphabarz_(0))`
`4r^(2) |alpha|^(2) -r^(2)`
`rArr 1+|alpha|^(2) |z_(0)|^(2) - |alpha|^(2) -|z_(0)|^(2) = 4r^(2)|alpha|^(2)-r^(2)`
Given ` 2|z_(0)|^(2) = r^(2) + 2`
`2|z_(0)|^(2) = r^(2)+ 2`
`rArr (1-|alpha|^(2))(1-(r^(2) +2)/(2)) = 4r^(2)|alpha|^(2) -r^(2)`
`rArr (1-|alpha|^(2))((-r^(2))/(2))= 4r^(2)|alpha|^(2) -r^(2)`
`rArr |alpha|^(2) -1 = 8|alpha|^(2)-2`
`rArr |alpha|^(2) =(1)/(7) rArr |alpha| = (1)/(sqrt(7))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let complex numbers alpha and 1/alpha^- lie on circles (x-x_0)^2+(y-y_0)^2=r^2 and (x-x_0)^2+(y-y_0)^2=4r^2 respectively if z_0=x_0+iy_0 satisfies the equation 2absz_0^2=r^2+2 then absalpha=

Let complex numbers alphaand (1)/(alpha) lie on circles (x-x_(0))^(2)+(y-y_(0))^(2)=r^(2)and(x-x_(0))^(2)+(y-y_(0))^(2)=4r^(2) respectively . If z_(0)=x_(0)+iy_(0) satisfies the equation 2|z_(0)|^(2)=r^(2)+2 " then "|alpha| =

Set of value of alpha for which the point (alpha,1) lies inside the circle x^(2)+y^(2)-4=0 and parabola y^(2)=4x is

If (a,0) is a point on a diameter of the circle x^2+y^2=4 , then x^2-4x-a^2=0 has

Find the number of common tangent to the circles x^2+y^2+2x+8y-23=0 and x^2+y^2-4x-10 y+9=0

The number of common tangents that can be drawn to the circles x^2+y^2-4x-6y-3=0 and x^2+y^2+2x+2y+1=0 is :

If the circle x ^(2) +y^(2) -4rx- 2ry+4r^(2)=0 and x^(2) +y^(2) =25 touch each other, then r satisfies-

The circle x^2+y^2+x+y=0 and x^2+y^2+x-y=0 intersect at an angle of :

Find the image of the circle x^2+y^2-2x+4y-4=0 in the line 2x-3y+5=0

The circles x^2+y^2+x+y=0 and x^2+y^2+x-y=0 intersect at an angle of