Home
Class 12
MATHS
If the terms of the A.P. sqrt(a-x),sqrt(...

If the terms of the A.P. `sqrt(a-x),sqrt(x),sqrt(a+x)` are all in integers, `w h e r ea ,x >0,` then find the least composite value of `adot`

Text Solution

Verified by Experts

`sqrt(a-x),sqrtx,sqrt(a+x)` in A.P
`rArr2sqrtx=sqrt(a-x)+sqrt(a+x)`
`sqrt4x=a-x+a+x+2sqrt(a^(2)-x^(2))` (squaring both sides)
`rArr2x-a=sqrt(a^(2)-x^(2))`
`rArr4x^(2)-4ax+a^(2)=a^(2)-x^(2)`
`rArr5x^(2)=4ax`
`rArra=(5x)/4`
Now, x must be perfect square as `sqrtx` is an integer.
`rArr` x=1,4,9,16,...etc.
For x=1,a=`5/4` (rational number)
for x=4,a=5(prime number)
For x=9,a=`(45/4)` (rational number)
for x=16,a=20 ( composite number)
Hence, least composite value of a is 20.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.15|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.16|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.13|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If the terms of the A.P, sqrt(a-x),sqrt(x),sqrt(a+x) are all in integers, where a>x >0, then find the least composite value of a .

The value of int sqrt(x)e^(sqrt(x))dx is -

For a ,x ,>0 prove tht at most one term of the G.P. sqrt(a-x),sqrt(x),sqrt(a+x) can be rational.

Find all possible values of sqrt(|x|-2)

If f(x)=sqrt(x^2+a x+4) is defined for all x , then find the value of adot

Evaluate lim_(xtooo) sqrt(x)(sqrt(x+c)-sqrt(x)).

Find the derivatives w.r.t. x : sqrt(x) log sqrt(x)

The value of int (a^(sqrt(x)))/(sqrt(x))dx is -

If the difference between the roots of the equation x^2+a x+1=0 is less then sqrt(5) , then find the set of possible value of adot

Find the derivative of sqrt(5-x) w.r.t. x .