Home
Class 12
MATHS
If the sequence a(1),a(2),a(3),…,a(n) is...

If the sequence `a_(1),a_(2),a_(3),…,a_(n)` is an A.P., then prove that `a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))`

Text Solution

Verified by Experts

Let d be the common difference of the A.P. Then,
`d=a_(2)-a_(1)=a_(3)-a_(2)=a_(4)-a_(3)=cdotcdotcdot=a_(2n)-a_(2n-1)`
Now, `a_(1)^(2)=a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)`
`=(a_(1)+a_(2))(a_(1)-a_(2))+(a_(3)+a_(4))(a_(3)-a_(4))+..+(a_(2n-1)+a_(2n))xx(a_(2n-1)-a_(2n))`
`=-d(a_(1)+a_(2)+a_(3)+...+a_(2n))`
`=-d(2n)/2(a_(1)+a_(2n))`
`-dn((a_(1)^(2)-a_(2n)^(2)))/(a_(1)-a_(2n))`
`=(dn(a_(1)^(2)-a_(2n)^(2)))/(a_(2n)-a_(1))`
`=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))` [Using `a_(2n)=a_(1)+(2n-1)d`]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.29|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.30|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.27|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3),…, a_(2k) are in A.P., prove that a_(1)^(2) - a_(2)^(2) + a_(3)^(2) - a_(4)^(2) +…+a_(2k-1)^(2) - a_(2k)^(2) = (k)/(2k-1)(a_(1)^(2) - a_(2k)^(2)) .

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If a_(1), a_(2), a_(3), …., a_(n) are in H.P., prove that, a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) +…+ a_(n-1)a_(n) = (n-1)a_(1)a_(n)

If a_(1), a_(2),…,a_(n) are in G.P., then show that (1)/(a_(1)^(2) - a_(2)^(2)) + (1)/(a_(2)^(2) - a_(3)^(2))+...+ (1)/(a_(n-1)^(2) - a_(n)^(2)) = (r^(2))/((1-r^(2))^(2))[(1)/(a_(n)^(2))-(1)/(a_(1)^(2))]

If a_(1), a_(2), a_(3),…, a_(n) be in A.P. Show that, (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) +….+(1)/(a_(n-1)a_(n)) = (n-1)/(a_(1)a_(n))

If a_(1) ge 0 for all t and a_(1), a_(2), a_(3),….,a_(n) are in A.P. then show that, (1)/(a_(1)a_(3)) + (1)/(a_(3)a_(5)) +...+ (1)/(a_(2n-1).a_(2n+1)) = (n)/(a_(1)a_(2n+1))

Applying vectors , show that (a_(1)b_(1)+a_(2)b_(2)+a_(3)b_(3))^(2)le (a_(1)^(2)+a_(2)^(2)+a_(3)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))

If a_(1), a_(2) , a_(3),…,a _(n+1) are in A. P. then the value of (1)/(a _(1)a_(2))+(1)/(a_(2)a_(3))+(1)/(a_(3)a_(4))+...+(1)/(a_(n)a_(n+1)) is-

If a_(1) ge 0 for all t and a_(1), a_(2), a_(3),….,a_(n) are in A.P. then show that, (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+ (1)/(sqrt(a_(n-1))+sqrt(a_(n))) = (n-1)/(sqrt(a_(1))+sqrt(a_(n)))

If A_(1), A_(2),..,A_(n) are any n events, then