Home
Class 12
MATHS
If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx...

If `(a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0)` , then show that `a ,\ b ,\ c\ a n d\ d` are in G.P.

Text Solution

Verified by Experts

It is given that
`(a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)=lamda`(say)
Now, `(a+bx)/(a-bx)=lamda/1=lamda`
or `((a+bx)-(a-bx))/((a+bx)+(a-bx))=(lamda-1)/(lamda+1)`
or `(bx)/a=(lamda-1)/(lamda+1)`
or `b/a=((lamda-1))/(x(lamda+1))`
Thus,a,b,c,d are in G.P.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.35|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.36|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.33|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If (a+b x)/(a-b x)=(b+c x)/(b-c x)=(c+dx)/(c-dx)(x!=0), then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx) (x+-0) then show a,b,c and d are in G.P

If (a-bx)/(a+bx)=(b-cx)/(b+cx)=(c-dx)/(c+dx) show that a,b,c , d are in G.P.

If x/(b + c -a) = y/(c + a - b) = z/(a + b -c) , then show that (b -c) x + (c-a) y + (a -b) z = 0 .

If a, b, c and d are in G.P., show that, (a-b)^(2), (b-c)^(2), (c-d)^(2) are in G.P.

If (y/z)^a.(z/x)^b.(x/y)^c=1 and a,b,c are in A.P ,show that x,y,z are in G.P.

If a, b, c, d are in G.P, prove that (a^n + b^n), (b^n + c^n), (c^n + d^n) are in G.P.

If a, b, c and d are in G.P., show that, a^(2) + b^(2), b^(2) + c^(2), c^(2) + d^(2) are in G.P.

If x^(1/a)=y^(1/b)=z^(1/c) where a,b,c are in A.P,,than show that x,y,z are in G.P.