Home
Class 12
MATHS
Find the sum to n terms of the sequence ...

Find the sum to `n` terms of the sequence `(x+1//x)^2,(x^2+1//x)^2,(x^3+1//x)^2, ,`

Text Solution

Verified by Experts

Let `S_(n)` denote the sum to n terms of the given sequence Then,
`S_(n)=(x+1/x)^(2)+(x^(2)+1/(x^(2)))^(2)+(x^(3)+1/x^3)^(2)+…+(x^(n)+1/(x^(n)))^(2)`
`=(x^(2)+1/(x^(2))+2)+(x^(4)+1/(x^(4))+2)+(x^(6)+1/(x^(6))+2)+...+(x^(2n)+1/(x^(2n))+2)`
`=(x^(2)+x^(4)+x^(6)+...+x^(2n))`
`+(1/(x^(2))+1/(x^(4))+1/(x^(6))+...+1/(x^(2n)))+underset("n times")((2+3+...))`
`=x^(2)(((x^(2))^(n)-1)/(x^(2)-1))+1/(x^(2))(((1//x^(2))^(n)-1)/((1//x^(2))-1))+2n`
`=x^(2)((x^(2n)-1)/(x^(2)-1))+1/(x^(2n))((1-x^(2n))/(1-x^(2)))+2n`
`=x^(2)((x^(2n)-1)/(x^(2)-1))+1/(x^(2n))((x^(2n)-1)/(x^(2)-1))+2n`
`=((x^(2n)-1)/(x^(2)-1))(x^(2)+1/(x^(2n)))+2n`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.51|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.52|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.49|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum of n-terms of the following series: (x+1/x)^2+(x^2+1/x^2)^2+(x^3+1/x^3)^2+(x^4+1/x^4)^2+...

The sum of 10 terms of the series (x+1/x)^2+(x^2+1/x^2)^2+(x^3+1/x^3)^2+.... is

Find the sum to n terms of the following series: (x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(3)+(1)/(x^(3)))^(2)+(x^(4)+(1)/(x^(4)))^(2)+...

Find the sum to infinity of the series 1^2+2^2x+3^2x^2+oodot

Find the middle term (or terms): (3x-(1)/(2x))^(9)

Find the 10th term of (2x^2+1/x)^12 .

If f(x)=(1)/(x^(2)) , show that f(x)-f(x+1)=(2m-1)/(x^(2)(x+1)^(2)) , hence find the the sum of first n terms of the series (3)/(1^(2)*2^(2))+(5)/(2^(2)*3^(2))+(7)/(3^(3)*4^(2))+....

Find the sum of the series 1-3x+5x^2-7x^3+ ton terms.

Find the sum of the series : 1^(2) + 2^(2)x + 3^(2)x^(2) + 4^(2) x^(3)+…. oo

sum_(r=1)^ntan^-1((x_r-x_(r-1))/(1+x_(r-1)x_r))=sum_(r=1)^n(tan^-1x_r-tan^-1x_(r-1))=tan^-1x_n-tan^-1x_0, AAn in N Answer the following question on above passage: The sum to infinite terms of the series cot^-1(2^2+1/2)+cot^-1(2^3+1/2^2)+cot^-1(2^4+1/2^3)+ ..... is