Home
Class 12
MATHS
If Sigma(r=1)^(n) T(r)=n(2n^(2)+9n+13), ...

If `Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13)`, then find the sum `Sigma_(r=1)^(n)sqrt(T_(r))`.

Text Solution

Verified by Experts

`S_(n)=sum_(r=1)^(n)T_(r)=n(2n^(2)+9n+13)`
`rArrT_(r)=S_(r)-S_(r-1)`
`=r(2r^(2)+9r+13)-(r-1)(2(r-1)^(2)+9(r-1)+13)`
=`6r^(2)+12r+6=6(r+1)^(2)`
`rArrsqrt(T_(r))=sqrt6(r+1)`
`rArrsum_(r=1)^(n)sqrt(T_(r))=sqrt6sum_(r=1)^(n)(r+1)`
`sqrt6((n^(2)+3n)/2)`
`=sqrt(3/2)(n^(2)+3n)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.89|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.90|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.87|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=1)^n T_r=n(2n^2+9n+13), then find the sum sum_(r=1)^nsqrt(T_r)dot

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)

Find the sum of sum_(r=1)^n r* (nC_r)/(nC_(r-1)

If sum_(r=1)^nT_r =n/8(n+1)(n+2)(n+3) then find sum_(r=1)^n1/T_r

msum_(r=1)^n1/nsqrt((n+r)/(n-r))

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

Find the value of sum_(r=1)^(n) (r)/(1+r^(2)+r^(4))