Home
Class 12
MATHS
Find the sumsum(0leiltjlen)1....

Find the `sumsum_(0leiltjlen)1`.

Text Solution

Verified by Experts

`underset(0leiltjlen)(sumsum1)=(sum_(i=1)^(n)sum_(j=1)^(n)1-sum_(i=j)sum1)/2`
`=((sum_(j=1)^(n)1)(sum_(j=1)^(n)1)-sum_(j=1)^(n))/2`
`=(n^(2)-n)/2`
`=(n(n-1))/2`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.94|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.95|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.92|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

If (1+x)^n=C_0+C_1x+C_2x^2+.......+C_n x^n , then show that the sum of the products of the coefficients taken two at a time, represented by sumsum_(0lt=iltjlt=n) ""^nc_i ""^n c_j is equal to 2^(2n-1)-((2n)!)/ (2(n !)^2)

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(i-1)) is equal to

Find the value of underset(0leiltjlen)(sumsum)(-1)^(i-j+1)(.^(n)C_(i)*.^(n)C_(j)) .

Find the following sum: sumsum_(i ne j) ""^(n)C_(i).""^(n)C_(j)

Let S_(1)=underset(0 le i lt j le 100)(sumsum)C_(i)C_(j) , S_(2)=underset(0 le j lt i le 100)(sumsum)C_(i)C_(j) and S_(3)=underset(0 le i = j le 100)(sumsum)C_(i)C_(j) where C_(r ) represents cofficient of x^(r ) in the binomial expansion of (1+x)^(100) If S_(1)+S_(2)+S_(3)=a^(b) where a , b in N , then the least value of (a+b) is

CENGAGE PUBLICATION-PROGRESSION AND SERIES-ILLUSTRATION 5.93
  1. Find the sumsum(0leiltjlen)1.

    Text Solution

    |