Home
Class 12
MATHS
Find the sum of the series sum(r=11)^(99...

Find the sum of the series `sum_(r=11)^(99)(1/(rsqrt(r+1)+(r+1)sqrtr))`

Text Solution

Verified by Experts

The correct Answer is:
9/10

`T_(r)=1/(sqrtrsqrt(r+1)[sqrtr+sqrt(r+1)])=(sqrt(r+1)-sqrtr)/(sqrtrsqrt(r+1))`
`=1/sqrtr-1/(sqrt(r+1))`
=V( r)-V(r+1), where V(r )=`1/(sqrtr)`
`therefore` Required sum, `sum_(r=1)^(99)(V(r )-V(r+1))=V(1)-V(100)`
`=1-1/(sqrt(100))`
`=1-1/10=9/10`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.103|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.104|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 5.101|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the series sum_(r=1)^n r/((r+1) !)dot

Find the sum of sum_(r=1)^n r* (nC_r)/(nC_(r-1)

Find the value of sum_(r=1)^(n) (r)/(1+r^(2)+r^(4))

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)

Find the sum sum_(r=0) .^(n+r)C_r .

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

Find the sum sum_(r=0)^(5)""^(32)C_(6r) .

Find the sum sum_(r=1)^n1/((a r+b)(a r+a+b))dot

The value of sum_(r=1)^(5)(i^(r )-i^(r+1)) is, where i=sqrt(-1)

Evaluate the following limit: lim_(nto oo)(sum_(r=1)^(n) sqrt(r)sum_(r=1)^(n)1/(sqrt(r)))/(sum_(r=1)^(n)r)