Home
Class 12
MATHS
Prove that x=underset(91 "times")ubrace(...

Prove that x=`underset(91 "times")ubrace(1111,....)` is composite number.

Text Solution

Verified by Experts

x=`underset(91 "times")ubrace(1111,....)`
`=1+10+10^(2)+10^(3)+…+10^(90)`
`=(1(10^(91)-1))/(10-1)`
`=(((10^(13))^(7)-))/(10^(13)-1)xx((10^(13)-1))/(10-1)`
`=(1+10^(13)+10^(26)+….+10^(78))xx(1+10+10^(2)+…+10^(12))`
=Composite number
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES 5.3|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES 5.4|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES 5.1|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Prove that underset(xrarroo)"lim"(1)/(x)=0 .

Show that (111...1)/(91 "digits") is a composite number.

Prove that : underset(xrarr3)"lim"(x^(2)-9)/(x-3)=6

If a = underset(55 "times")underbrace(111.....1), b= 1+10+10^(2)+10^(3)+10^(4) and c=1+10^(5) +10^(10)+ .. ..+10^50 then prove that a=bc

Prove : underset(xrarroo)"lim"(cosx)/(x)=0

Prove : underset(xrarroo)"lim"(sinx)/(x)=0

Prove : underset(xrarr0)"lim""xcos"(1)/(x)=0

Prove that underset(xrarr0)"lim"(3x+|x|)/(7x-5|x|) does not exist .

Prove that: underset(xrarrinfty)lim ((x+5)/(x+1))^x = e^4

How will you show that (17xx11xx2)+(17xx11xx5) is a composite number? Explain.