Home
Class 12
MATHS
Let a1,a2,.........an be real numbers ...

Let `a_1,a_2,.........a_n` be real numbers such that `sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4` then find the value of `sum_(i=1)^100 a_i`

Text Solution

Verified by Experts

Let `sqrt(a_(i)-(i-1))=b_(i)`
So, we have
`sum_(i=1)^(n)b_(i)=1/2sum_(i=1)^(n)(b_(i)^(2)+(i-1))-(n(n-3))/4`
`rArrsum_(i=1)^(n)b_(i)=1/2sum_(i=1)^(n)b_(i)^(2)+1/2(n(n-1))/2-(n(n-3))/4`
`rArrsum_(i=1)^(n)b_(i)^(2)-2sum_(i=1)^(n)b_(i)+n=0`
`sum_(i=1)^(n)(b_(i)^(2)-2b_(i)+1)=0`
`rArrsum_(i=1)^(n)(b_(i)-1)^(2)=0`
`rArrb_(i)-1=0`
`rArrb_(i)=1`
`rArra_(i)=i`
`thereforesum_(i=1)^(100)=1+2+3+....+100=5050`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES 5.12|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES 5.13|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise SOLVED EXAMPLES 5.10|1 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .

If a_1,a_2,a3,...,a_n are in A.P then show that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n)

Let a_1,a_2,a_3,.......a_11 be real number satisfying a_1=15,27-2a_2gt0 anda_k=2a_(k-1)-a_(k-2) for k=3,4,.....11. If (a_1^2+a_2^2+......a_11^2)/11=90, then the value of (a_1 +a_2+.....a_11)/11 is equal to

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_1,a_2,a_3,.......a_n are in AP where a_1 gt 0foralli then the value of 1/(sqrta_1+sqrta_2)+1/(sqrta_2+sqrta_3)+....1/(sqrta_(n-1)+sqrta_n=

If a_1,a_2,.....a_n are positive real number whose product is a fixed number c, then the minimum value of a_1+a_2+......+a_(n-1)+a_n is

Let a_1,a_2 ,a_3 ...... be an A.P. Prove that sum_(n=1)^(2m)(-1)^(n-1)a_n^2=m/(2m-1)(a_1^2-a_(2m)^2) .

Let a_1,a_2,a_3…… ,a_n be in G.P such that 3a_1+7a_2 +3a_3-4a_5=0 Then find common ratio of G.P.

If a_1,a_2,.....a_n are in H.P., then the expression a_1a_2 + a_2a_3 + ... + a_(n-1)a_n is equal to

Consider the sequence defined by a_n=a n^2+b n+c dot If a_1=1,a_2=5,a n da_3=11 , then find the value of a_(10)dot