Home
Class 12
MATHS
If a ,\ b ,\ c ,\ d are in G.P., show th...

If `a ,\ b ,\ c ,\ d` are in G.P., show that: `(a b+b c+c d)^2=(a^2+b^2+c^2)(b^2+c^2+d^2)`

Text Solution

Verified by Experts

Let r be the common ratio of the G.P., a,b,c,d. Then
b=ar,c`=ar^(2)andd=ar^(3)`
`L.H.S=(ab+bc+cd)^(2)`
`(aar+arar^(2))+ar^(2)ar^(3))^(2)`
`=a^(4)r^(2)(1+r^(2)+r^(4))^(2)`
`R.H.S=(a^(2)+b^(2)+c^(2))(b^(2)+c^(2)+d^(2))`
`=(a^(2)+a^(2)r^(2)+a^(2)r^(4))(a^(2)r^(2)+a^(2)r^(4)+a^(2)r^(6))`
`=a^(2)(1+r^(2)+r^(4))a^(2)r^(2)(1+r^(2)+r^(4))`
`=a^(4)r^(2)(1-r^(2)+r^(4))^(2)`
`therefore` L.H.S=R.H.S
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.5|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.6|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.3|9 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If a, b, c and d are in G.P., show that, a^(2) + b^(2), b^(2) + c^(2), c^(2) + d^(2) are in G.P.

If a, b, c and d are in G.P., show that, (b-c)^(2) + (c-a)^(2)+ (d-b)^(2) = (a-d)^(2) .

If a,b,c,d be in G.P. show that (b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a, b, c and d are in G.P., show that, (a-b)^(2), (b-c)^(2), (c-d)^(2) are in G.P.

If a, b, c, d are in A.P. and a, b, c, d are in G.P., show that a^(2) - d^(2) = 3(b^(2) - ad) .

If a, b, c and d are in G.P., show that, a^(2)+b^(2)+c^(2), ab+bc+cd, b^(2)+c^(2)+d^(2) are in G.P.

If a, b, c are in G.P., show that a^(2) + b^(2), ab + bc and b^(2) + c^(2) are also in G.P.

If a, b, c are In A.P., then show that, (a+2b-c) (2b+c-a)(c+a-b) = 4abc