Home
Class 12
MATHS
underset("n-digits")((666 . . . .6)^(2))...

`underset("n-digits")((666 . . . .6)^(2))+underset("n-digits")((888 . . . .8))` is equal to

Text Solution

Verified by Experts

`S_(1)=underset(n "digits")(6666…)`
`=6+6xx10^(1)+6xx10^(2)+….+6xx10^(n-1)`
`=6xx((10^(n)-1))/(10-1)=2/3(10^(n)-1)`
Similarly,
`S_(2)=8/9(10^(n)-1)`
`rArrS_(1)^(2)+S_(2)=4/9(10^(n)-1)^(2)+8/9(10^(n)-1)`
`=4/9(10^(n)-1)[10^(n)-1+2]`
`=4/9[10^(2n)-1]`
Also, `underset(2n "digits")(4444...4)=4+$xx10+4xx10^(2)+...+4xx10^(2n-1)`
`=4((10^(2n)-1))/(10-1)`
Hence, proved.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.6|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.4|13 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

(666...n times)^2 +(888..n times) is equal to ___

Let f(1)=1 and f(n)=2overset(n-1)underset(r=1)sum f( r ) . Then overset(m) underset(n=1)sum f(n) is equal to

underset(nrarrinfty)lim((n+1)(n+2)....3n)/(n^(2n)))^(1/n) is equal to

underset(nrarroo)"lim"(-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to

Structures of glycine and alanine are given below. Show the peptide linkage in glycylalanine H_(2)N - underset("(Glycine)")(CH_(2)) - COOH, " " H_(2)N - underset(underset(CH_(3))(|))(CH) - underset("(Alanine)")(COOH)

underset(n to oo)lim(((n+1)(n+2)...3n)/(n^(2n)))^((1)/(n)) is equal to

value of underset(nrarrinfty)lim((n !)/n^n)^(1/n),where n inN is equal to

If underset(xrarr0)"lim" (tanx-sinx)/(x^(3))=(M)/(N) , then value of N (when M =3 ) is equal to -

The value of underset(nrarrinfty)limn{1/(3n^2+8n+4)+1/(3n^2+16n+16)+....+to n terms} is equal to

Statement -I : underset(xrarroo)"lim"(1^(2)/(x^(3))+(2^(2))/(x^(3))+3^(2)/(x^(3))+......+x^(2)/(x^(3)))= underset(xrarroo)"lim"(1^(2))/(x^(3))+underset(xrarroo)"lim"(2^(2))/(x^(3))+....+underset(xrarroo)"lim"(x^(2))/(x^(3))=0 Statement - II : underset(xrarra)"lim"{f_(1)(x)+f_(2)(x)+....+f_(n)(x)}=underset(xrarra)"lim"f_(1)(x)+underset(xrarra)"lim"f_(2)(x)+...+underset(xrarra)"lim"f_(n)(x)"