Home
Class 12
MATHS
Let An=(3/4)-(3/4)^2+(3/4)^3+….+(-1)^(n-...

Let `A_n=(3/4)-(3/4)^2+(3/4)^3+….+(-1)^(n-1)(3/4)^n and B_n = 1-A_n. find the least odd nastural numebr s`n_0, so that B_ngtA_n Aangen_0`

Text Solution

Verified by Experts

The correct Answer is:
6

`a_(n)=3/4-(3/4)^(3)+(3/4)^(3)+…+(-1)^(n-1)(3/4)^(n)`
`(((3)/(4)(1-(-3)/(4))^(n)))/(1-((3)/(4)))=(3)/(7)(1-((-3)/(4))^(n))`
Now, `b_(n)=1-a_(n) and b_(n)gta_(n)` for `ngen_(0)`
`therefore1-a_(n)gta_(n)` or `2a_(n)lt1`
or `6/7[1-(-3/4)?^(n)]lt1`
or `-(-3/4)^(n)lt1/6`
or `(-3)^(n+1)lt2^(2n-1)`
for n to be even, inequality always holds. For n to be odd, it holds for `nge7`. Therefore, the least natural number for which it holds is 6.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.6|11 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.4|13 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Let A_n = (3/4) -(3/4)^2 + (3/4)^3 +.....+(-1)^(n - 1) (3/4)^n , B_n = 1 - A_n . Find a least odd natural number n_0 , so that B_n gt A_n forall n ge n_0 .

If S_(n) = u_(1) + u_(2) + u_(3)+…+u_(n) = 4^(n) -1 , find the first four terms of the sequence {u_(n)} .

Let (a_0)/(n+1)+(a_1)/n+(a_2)/(n-1)++(a_(n-1))/2+a_n=0. Show that there exists at least real x between 0 and 1 such that a_0x^n+a_1x^(n-1)+a_2x^(n-2)++a_n=0

If a_(n+1)=1/(1-a_n) for n>=1 and a_3=a_1 . then find the value of (a_2001)^2001 .

Let: a_n=int_0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim_(n->oo)na_n

Let a_n=(1000)^n/(n!) for n in N . Then a_n is greatest, when

Compute the division : (a^(3^n)-b^(3^n))/(a^(3^(n-1))-b^(3^(n-1))) .

lim_(n->oo)(-3n+(-1)^n)/(4n-(-1)^n) is equal to a. -3/4 b. 0 if n is even c. -3/4 if n is odd d. none of these

If a_(1)=1 and a_(n+1)=(4+3a_(n))/(3+2a_(n)),nge1"and if" lim_(ntooo) a_(n)=a,"then find the value of a."

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4+....+((-1)^(n-1))/n C_n=1+1/2+1/3+...+1/n