Home
Class 12
MATHS
If x=sum(n=0)^ooa^n , y=sum(n=0)^oob^n ,...

If `x=sum_(n=0)^ooa^n , y=sum_(n=0)^oob^n , z=sum_(n=0)^ooc^n , w h e r e ra ,b ,a n dc` are in A.P. and `|a|<,|b|<1,a n d|c|<1,` then prove that `x ,ya n dz` are in H.P.

Text Solution

Verified by Experts

Here, `x=1/(1-a),y=1/(1-b),z=1/(1-c)`
Since a,b,c are in A.P. so
1-a,1-b,1-c are in A.P.
`rArr1/(1-a),1/(1-b),1/(1-c)` are in H.P.
`rArrx,y,z` are in H.P.
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.8|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.5|10 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

If x = sum _(n =0) ^(oo) a^(n) , y = sum _(n=0) ^(oo) b ^(n), z= sum _(n=0)^(oo) c^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1, thenx,y,z are in-

If a,b,c in AP and x=sum_(n=0)^inftya^n,y=sum_(n-0)^inftyb^n,z=sum_(n-0)^inftyc^n then x,y,z are in

If x= sum_(n=0)^(oo) cos ^(2n)theta , y = sum _(n=o) ^(oo) sin ^(2n)theta, z= sum _(n=0)^(oo) cos ^(2n)theta.sin ^(2n)theta and 0 lt theta lt (pi)/(2) then-

If i^2=-1 ,then sum_(n=0)^225i^n is

0ltthetaltpi/2, if x=sum_(n=0)^inftycos^(2n)theta,y=sum_(n=0)^inftysin^(2n)theta,z=sum_(n=0)^inftycos^(2n)thetasin^(2n)theta

Evaluate , S = sum_(n = 0)^infty 2^n/(a^(2^n) + 1) (where a gt 1 )

For 0 < varphigeqpi/2,ifx=sum_(n=0)^oocos^(2n)varphi,y=sum_(n=0)^oosin^(2n)varphi,t h e n (a) x y z=x z+y (b) x y z=x y+z (c) x y z=x+y+z (d) x y z=y z+x

If (1+x)^n=sum_(r=0)^n .^nC_r x^r then sum_(r=m)^n .^rC_m is equal to

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

If s_n= sum_(r=0)^n 1/(^"nC_r) and t_n=sum_(r=0)^n r/("^nC_r) then t_n/s_n is equal to