Home
Class 12
MATHS
Find the value of {:(" "SigmaSigma),(1 ...

Find the value of `{:(" "SigmaSigma),(1 le i le j):} " "i xx (1/2)^j`

Text Solution

Verified by Experts

The correct Answer is:
2

`S=sumsum_(ileiltj)ixx(1/2)^(j)`
`=1xx[(1/2)^(2)+(1/2)^(3)+(1/2)^(4)+…]`
`+2xx[(1/2)^(3)+(1/2)^(4)+(1/2)^(5)+..]`
`+3xx[(1/2)^(4)+(1/2)^(5)+(1/2)^(6)+…]`
…..
`=1xx((1/2)^(2))/(1-(1/2))+2xx((1/2)^(3))/(1-(1/2))+3xx((1/2)^(4))/(1-(1/2))+..`
`thereforeS=1xx(1/2)+2xx(1/2)^(2)+3xx(1/2)^(3)+...`
`therefore (1/2)S=1xx(1/2)^(2)+2xx(1/2)^(3)+3xx(1/2)^(4)...`
Subtracting, we get
`(1/2)S=(1/2)+(1/2)^(2)+(1/2)^(3)+(1/2)^(4)+...=(1/2)/(1-1/2)=1`
`therefore` S=2
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise EXERCIESE ( SINGLE CORRECT ANSWER TYPE )|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE PUBLICATION|Exercise CONCEPT APPLICATION EXERICISE 5.7|4 Videos
  • PROBABILITY II

    CENGAGE PUBLICATION|Exercise MULTIPLE CORRECT ANSWER TYPE|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

For 2 lt x lt 4 find the values of |x|. (ii) For -3 le x le -1 , find the values of |x|. (iii) For -3 le x lt 1, find the values of |x| (iv) For -5 lt x lt 7 find the values of |x-2| (v) For 1 le x le 5 find fthe values of |2x -7|

Find the value of lamda if three vectors vec(a) = 2hat(i) - hat(j) + hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c) = 3hat(i) + lamda hat(j) + 5hat(k) are coplanar

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of underset("1"le"i" lt "j" le "n" - "1" )(sum""sum) alpha _ "i" alpha _ "j"

Find the area of region {(x,y):0 le yle x^(2)+1,0ley le x+1,0 lex le2}

find the value of x,y and z so that the vectors vec a= x hat i+ 2 hat j+z hat k and vec b = 2 hat i +y hat j +hat k are equal

Find the value of [ (hat (k)xx hat (j)).hat(i)+hat(j).hat (k)]

Find the values of theta which satisfy tan^(2)theta = 1/3, - pi le theta le pi .